Previous |  Up |  Next

Article

Title: Remarks on statistical and $I$-convergence of series (English)
Author: Červeňanský, J.
Author: Šalát, T.
Author: Toma, V.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 2
Year: 2005
Pages: 177-184
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate the relationship between the statistical (or generally $I$-convergence) of a series and the usual convergence of its subseries. We also give a counterexample which shows that Theorem 1 of the paper by B. C. Tripathy “On statistically convergent series”, Punjab. Univ. J. Math. 32 (1999), 1–8, is not correct. (English)
Keyword: statistical convergence
Keyword: $I$-convergence
Keyword: $I$-convergent series
MSC: 40A05
MSC: 54A20
idZBL: Zbl 1110.40001
idMR: MR2148651
DOI: 10.21136/MB.2005.134134
.
Date available: 2009-09-24T22:19:53Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134134
.
Reference: [1] T. C. Brown, A. R. Freedman: The uniform density of sets of integers and Fermat’s Last Theorem.C. R. Math. Acad. Sci., R. Can. 12 (1990), 1–6. MR 1043085
Reference: [2] J. S. Connor: The statistical and strong p-Cesáro convergence of sequences.Analysis 8 (1988), 47–63. Zbl 0653.40001, MR 0954458
Reference: [3] J. S. Connor: Two valued measures and summability.Analysis 10 (1990), 373–385. Zbl 0726.40009, MR 1085803
Reference: [4] M. Dindoš, T. Šalát, V. Toma: Statistical convergence of infinite series.Czechoslovak Math. J. (2003). MR 2018844
Reference: [5] H. Fast: Sur la convergence statistique.Coll. Math. 2 (1951), 242–244. Zbl 0044.33605, MR 0048548
Reference: [6] H. Halberstam, F. Roth: Sequences I.Oxford, Clarendon Press, 1966.
Reference: [7] P. Kostyrko, M. Mačaj, T. Šalát, O. Strauch: On statistical limit points.Proc. Amer. Math. Soc. 129 (2001), 2647–2654. MR 1838788, 10.1090/S0002-9939-00-05891-3
Reference: [8] P. Kostyrko, T. Šalát, W. Wilczyński: $I$-convergence.Real. Anal. Exchange 26 (2000 –2001), 669–686. MR 1844385
Reference: [9] B. J. Powell, T. Šalát: Convergence of subseries of the harmonic series and asymptotic densities of sets of positive integers.Publ. Inst. Math. (Beograd) 50 (1991), 60–70. MR 1252159
Reference: [10] T. Šalát: On statistically convergent sequences of real numbers.Math. Slov. 30 (1980), 139–150. MR 0587239
Reference: [11] T. Šalát: Infinite Series.Academia, Praha, 1974. (Slovak)
Reference: [12] I. J. Schoenberg: The integrability of certain functions and related summability methods.Amer. Math. Monthly 66 (1959), 361–375. Zbl 0089.04002, MR 0104946, 10.2307/2308747
Reference: [13] B. C. Tripathy: On statistically convergent series.Punjab. Univ. J. Math. 32 (1999), 1–8. Zbl 0966.40003, MR 1778259
.

Files

Files Size Format View
MathBohem_130-2005-2_6.pdf 317.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo