Previous |  Up |  Next

Article

Title: The Henstock-Kurzweil approach to Young integrals with integrators in ${\rm BV}\sb \phi$ (English)
Author: Varayu, Boonpogkrong
Author: Chew, Tuan Seng
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 3
Year: 2006
Pages: 233-260
Summary lang: English
.
Category: math
.
Summary: In 1938, L. C. Young proved that the Moore-Pollard-Stieltjes integral $\int _a^bf\mathrm{d}g$ exists if $f\in \mathop {{\mathrm BV}}_\phi [a,b]$, $g\in \mathop {{\mathrm BV}}_\psi [a,b]$ and $\sum _{n=1}^\infty \phi ^{-1}({1}/{n})\psi ^{-1} ({1}/{n})<\infty $. In this note we use the Henstock-Kurzweil approach to handle the above integral defined by Young. (English)
Keyword: Henstock integral
Keyword: Stieltjes integral
Keyword: Young integral
Keyword: $\phi $-variation
MSC: 26A21
MSC: 26A39
MSC: 26A42
MSC: 28B15
idZBL: Zbl 1112.26004
idMR: MR2248593
DOI: 10.21136/MB.2006.134138
.
Date available: 2009-09-24T22:26:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134138
.
Reference: [1] Boonpogkrong Varayu, Tuan Seng Chew: On integrals with integrators in $\mathop {{\mathrm BV}}_p$.Real Anal. Exch. 30 (2004/2005), 193–200. MR 2127525, 10.14321/realanalexch.30.1.0193
Reference: [2] R. M. Dudley, R. Norvaisa: Differentiability of Six Operators on Nonsmooth Functions and $p$-Variation.Springer, Berlin, 1999. MR 1705318
Reference: [3] I. J. L. Garces, Peng-Yee Lee, Dongsheng Zhao: Moore-Smith limits and the Henstock integral.Real Anal. Exchange 24 (1998/1999), 447–455. MR 1691764
Reference: [4] P. Y. Lee, R. Výborný: The Integral. An Easy Approach after Kurzweil and Henstock.Cambridge University Press, 2000. MR 1756319
Reference: [5] R. Lesniewicz, W. Orlicz: On generalized variations (II).Stud. Math. 45 (1973), 71–109. MR 0346509, 10.4064/sm-45-1-71-109
Reference: [6] J. Musielak, W. Orlicz: On generalized variations (I).Stud. Math. 18 (1959), 11–41. MR 0104771, 10.4064/sm-18-1-11-41
Reference: [7] E. R. Love, L. C. Young: On fractional integration by parts.Proc. London Math. Soc., II. Ser., 44 (1938), 1–35. MR 1575481
Reference: [8] E. R. Love: Integration by parts and other theorems for $R^3S$-integrals.Real Anal. Exch. 24 (1998/1999), 315–336. MR 1691754
Reference: [9] R. Norvaisa: Quadratic Variation, p-Variation and Integration with Applications to Strock Price Modelling.Preprint, 2003. MR 2251444
Reference: [10] Š. Schwabik: A note on integration by parts for abstract Perron-Stieltjes integrals.Math. Bohem. 126 (2001), 613–629. Zbl 0980.26005, MR 1970264
Reference: [11] L. C. Young: An inequality of the Hölder type, connected with Stieltjes integration.Acta Math. 67 (1936), 251–282. Zbl 0016.10404, MR 1555421, 10.1007/BF02401743
Reference: [12] L. C. Young: General inequalities for Stieltjes integrals and the convergence of Fourier series.Math. Ann. 115 (1938), 581–612. MR 1513204, 10.1007/BF01448958
.

Files

Files Size Format View
MathBohem_131-2006-3_2.pdf 420.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo