Previous |  Up |  Next


strong Henstock-Kurzweil integral; inner variation; $\mathop {\text{SL}}$ condition
In this paper we give some complete characterizations of the primitive of strongly Henstock-Kurzweil integrable functions which are defined on $\mathbb{R}^m$ with values in a Banach space.
[1] Schwabik, Š., Ye Guoju: Topics in Banach space integration. World Scientific, Singapore, 2005. MR 2167754
[2] Lee Tuo-Yeong: Some full characterizations of strong McShane integral functions. Math. Bohem. 129 (2004), 305–312. MR 2092716
[3] Chew Tuan Seng: On Henstock’s inner variation and strong derivatives. Real Anal. Exch. 24 (2001/2002), 725–733. MR 1923161
[4] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration. World Scientific, Singapore, 1989. MR 1050957 | Zbl 0699.26004
[5] Henstock, R.: The general theory of integration. Oxford University Press, Oxford, 1991. MR 1134656 | Zbl 0745.26006
[6] Lu Jitan, Lee Peng Yee: The primitives of Henstock integrable functions in Euclidean space. Bull. Lond. Math. Society, 31 (1999), 137–180. MR 1664188
[7] Paredes, L. I., Lee Peng Yee, Chew Tuan Seng: Banach-valued HL multiple integral. Research Report No. 788, National University of Singapore 788 (2002), 1–20.
[8] Paredes, L. I., Lee P.-Y., Chew. T. S.: Controlled convergence theorem for strong variational Banach-valued multiple integrals. Real Anal. Exch. 28 (2002/2003), 579–591. MR 2010339
Partner of
EuDML logo