Previous |  Up |  Next

Article

Title: Some characterizations of the primitive of strong Henstock-Kurzweil integrable functions (English)
Author: Ye, Guoju
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 3
Year: 2006
Pages: 279-290
Summary lang: English
.
Category: math
.
Summary: In this paper we give some complete characterizations of the primitive of strongly Henstock-Kurzweil integrable functions which are defined on $\mathbb{R}^m$ with values in a Banach space. (English)
Keyword: strong Henstock-Kurzweil integral
Keyword: inner variation
Keyword: $\mathop {\text{SL}}$ condition
MSC: 26A39
idZBL: Zbl 1112.26014
idMR: MR2248595
DOI: 10.21136/MB.2006.134140
.
Date available: 2009-09-24T22:26:29Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134140
.
Reference: [1] Schwabik, Š., Ye Guoju: Topics in Banach space integration.World Scientific, Singapore, 2005. MR 2167754
Reference: [2] Lee Tuo-Yeong: Some full characterizations of strong McShane integral functions.Math. Bohem. 129 (2004), 305–312. MR 2092716
Reference: [3] Chew Tuan Seng: On Henstock’s inner variation and strong derivatives.Real Anal. Exch. 24 (2001/2002), 725–733. MR 1923161
Reference: [4] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration.World Scientific, Singapore, 1989. Zbl 0699.26004, MR 1050957
Reference: [5] Henstock, R.: The general theory of integration.Oxford University Press, Oxford, 1991. Zbl 0745.26006, MR 1134656
Reference: [6] Lu Jitan, Lee Peng Yee: The primitives of Henstock integrable functions in Euclidean space.Bull. Lond. Math. Society, 31 (1999), 137–180. MR 1664188
Reference: [7] Paredes, L. I., Lee Peng Yee, Chew Tuan Seng: Banach-valued HL multiple integral.Research Report No. 788, National University of Singapore 788 (2002), 1–20.
Reference: [8] Paredes, L. I., Lee P.-Y., Chew. T. S.: Controlled convergence theorem for strong variational Banach-valued multiple integrals.Real Anal. Exch. 28 (2002/2003), 579–591. MR 2010339
.

Files

Files Size Format View
MathBohem_131-2006-3_4.pdf 315.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo