Title:
|
Some characterizations of the primitive of strong Henstock-Kurzweil integrable functions (English) |
Author:
|
Ye, Guoju |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
131 |
Issue:
|
3 |
Year:
|
2006 |
Pages:
|
279-290 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we give some complete characterizations of the primitive of strongly Henstock-Kurzweil integrable functions which are defined on $\mathbb{R}^m$ with values in a Banach space. (English) |
Keyword:
|
strong Henstock-Kurzweil integral |
Keyword:
|
inner variation |
Keyword:
|
$\mathop {\text{SL}}$ condition |
MSC:
|
26A39 |
idZBL:
|
Zbl 1112.26014 |
idMR:
|
MR2248595 |
DOI:
|
10.21136/MB.2006.134140 |
. |
Date available:
|
2009-09-24T22:26:29Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134140 |
. |
Reference:
|
[1] Schwabik, Š., Ye Guoju: Topics in Banach space integration.World Scientific, Singapore, 2005. MR 2167754 |
Reference:
|
[2] Lee Tuo-Yeong: Some full characterizations of strong McShane integral functions.Math. Bohem. 129 (2004), 305–312. MR 2092716 |
Reference:
|
[3] Chew Tuan Seng: On Henstock’s inner variation and strong derivatives.Real Anal. Exch. 24 (2001/2002), 725–733. MR 1923161 |
Reference:
|
[4] Lee, P.-Y.: Lanzhou Lectures on Henstock Integration.World Scientific, Singapore, 1989. Zbl 0699.26004, MR 1050957 |
Reference:
|
[5] Henstock, R.: The general theory of integration.Oxford University Press, Oxford, 1991. Zbl 0745.26006, MR 1134656 |
Reference:
|
[6] Lu Jitan, Lee Peng Yee: The primitives of Henstock integrable functions in Euclidean space.Bull. Lond. Math. Society, 31 (1999), 137–180. MR 1664188 |
Reference:
|
[7] Paredes, L. I., Lee Peng Yee, Chew Tuan Seng: Banach-valued HL multiple integral.Research Report No. 788, National University of Singapore 788 (2002), 1–20. |
Reference:
|
[8] Paredes, L. I., Lee P.-Y., Chew. T. S.: Controlled convergence theorem for strong variational Banach-valued multiple integrals.Real Anal. Exch. 28 (2002/2003), 579–591. MR 2010339 |
. |