| Title: | Where are typical $C^{1}$ functions one-to-one? (English) | 
| Author: | Buczolich, Zoltán | 
| Author: | Máthé, András | 
| Language: | English | 
| Journal: | Mathematica Bohemica | 
| ISSN: | 0862-7959 (print) | 
| ISSN: | 2464-7136 (online) | 
| Volume: | 131 | 
| Issue: | 3 | 
| Year: | 2006 | 
| Pages: | 291-303 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Suppose $F\subset [0,1]$ is closed. Is it true that the typical (in the sense of Baire category) function in $C^{1}[0,1]$ is one-to-one on $F$? If ${\underline{\dim }}_{B}F<1/2$ we show that the answer to this question is yes, though we construct an $F$ with $\dim _{B}F=1/2$ for which the answer is no. If $C_{\alpha }$ is the middle-$\alpha $ Cantor set we prove that the answer is yes if and only if $\dim (C_{\alpha })\le 1/2.$ There are $F$’s with Hausdorff dimension one for which the answer is still yes. Some other related results are also presented. (English) | 
| Keyword: | typical function | 
| Keyword: | box dimension | 
| Keyword: | one-to-one function | 
| MSC: | 26A15 | 
| MSC: | 28A78 | 
| MSC: | 28A80 | 
| idZBL: | Zbl 1112.26002 | 
| idMR: | MR2248596 | 
| DOI: | 10.21136/MB.2006.134143 | 
| . | 
| Date available: | 2009-09-24T22:26:37Z | 
| Last updated: | 2020-07-29 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/134143 | 
| . | 
| Reference: | [1] S. J. Agronsky, A. M. Bruckner, M. Laczkovich: Dynamics of typical continuous functions.J. London Math. Soc. 40 (1989), 227–243. MR 1044271 | 
| Reference: | [2] M. Elekes, T. Keleti: Borel sets which are null or non-sigma-finite for every translation invariant measure.Adv. Math. 201 (2006), 102–115. MR 2204751, 10.1016/j.aim.2004.11.009 | 
| Reference: | [3] K. J. Falconer: The geometry of fractal sets.Cambridge Tracts in Mathematics, vol. 85, 1985. Zbl 0587.28004, MR 0867284 | 
| Reference: | [4] K. J. Falconer: Fractal Geometry: Mathematical Foundations and Applications.John Wiley & Sons, 1990. Zbl 0689.28003, MR 1102677 | 
| Reference: | [5] P. Mattila: Geometry of Sets and Measures in Euclidean Spaces.Cambridge University Press, 1995. Zbl 0819.28004, MR 1333890 | 
| Reference: | [6] C. A. Rogers: Hausdorff Measures.Cambridge University Press, 1970. Zbl 0204.37601, MR 0281862 | 
| . |