Previous |  Up |  Next

Article

Title: Graph operations and neighbor-integrity (English)
Author: Kırlangıc, Alpay
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 3
Year: 2004
Pages: 245-254
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a graph. A vertex subversion strategy of $G$, say $S$, is a set of vertices in $G$ whose closed neighborhood is removed from $G$. The survival-subgraph is denoted by $G/S$. The Neighbor-Integrity of $G$, $\mathop {\mathrm NI}(G)$, is defined to be $\mathop {\mathrm NI}(G) = \min _{S\subseteq V(G)} \lbrace |S|+c(G/S)\rbrace $, where $S$ is any vertex subversion strategy of $G$, and $c(G/S)$ is the maximum order of the components of $G/S$. In this paper we give some results connecting the neighbor-integrity and binary graph operations. (English)
Keyword: vulnerability
Keyword: integrity
Keyword: neighbor-integrity
MSC: 05C40
MSC: 05C85
idZBL: Zbl 1080.05515
idMR: MR2092711
DOI: 10.21136/MB.2004.134145
.
Date available: 2009-09-24T22:14:42Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134145
.
Reference: [1] Atıcı, M.; Kırlangı, A.: Counterexamples to the theorems of integrity of prisms and ladders.J. Comb. Math. Comb. Comput. 34 (2000), 119–127. MR 1772790
Reference: [2] Bagga, K. S.; Beineke, L. W.; Goddard, W. D.; Lipman, M. J.; Pippert, R. E.: A survey of integrity.Discrete Appl. Math. 37/38 (1992), 13–28. MR 1176842, 10.1016/0166-218X(92)90122-Q
Reference: [3] Bagga, K. S.; Beineke, L. W.; Lipman, M. J.; Pippert, R. E.: Edge-integrity: a survey.Discrete Math. 124 (1994), 3–12. MR 1258837, 10.1016/0012-365X(94)90084-1
Reference: [4] Barefoot, C. A.; Entringer, R.; Swart, H.: Vulnerability in graphs—a comparative survey.J. Comb. Math. Comb. Comput. 1 (1987), 13–22. MR 0888829
Reference: [5] Cozzens, M. B.: Stability measures and data fusion networks.Graph Theory of New York 26 (1994), 8–14.
Reference: [6] Cozzens, M. B.; Moazzami, D.; Stueckle, S.: The tenacity of a graph.Graph theory, combinatorics, algorithms and applications, Alavi, Y. et al. (eds.), Wiley, New York, 1995, pp. 1111–1122. MR 1405887
Reference: [7] Cozzens, M. B.; Wu, S. Y.: Edge-neighbor-integrity of trees.Australas J. Comb. 10 (1994), 163–174. MR 1296949
Reference: [8] Cozzens, M. B.; Wu, S. Y.: Vertex-neighbor-integrity of trees.Ars. Comb. 43 (1996), 169–180. MR 1415985
Reference: [9] Cozzens, M. B.; Wu, S. Y.: Bounds of edge-neighbor-integrity of graphs.Australas J. Comb. 15 (1997), 71–80. MR 1448231
Reference: [10] Goddard, W.; Swart, H. C.: On the toughness of a graph.Quaest. Math. 13 (1990), 217–232. MR 1068711, 10.1080/16073606.1990.9631613
Reference: [11] Gambrell, Marci J.: Vertex-neighbor-integrity of magnifiers, expanders and hypercubes.Discrete Math. 216 (2000), 257–266. Zbl 0957.05067, MR 1750866, 10.1016/S0012-365X(99)00352-0
Reference: [12] Harary, F.: Graph Theory.Addison-Wesley Publishing Company, 1969. Zbl 0196.27202, MR 0256911
Reference: [13] Kırlangı, A.: The edge-integrity of some graphs.J. Comb. Math. Comb. Comput. 37 (2001), 139–148. MR 1834438
Reference: [14] Kırlangı, A.; Ozan, A.: The neighbour-integrity of total graphs.Int. J. Comput. Math. 76 (2000), 25–33. MR 1808796, 10.1080/00207160008805006
.

Files

Files Size Format View
MathBohem_129-2004-3_2.pdf 322.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo