Title:
|
Graph operations and neighbor-integrity (English) |
Author:
|
Kırlangıc, Alpay |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
129 |
Issue:
|
3 |
Year:
|
2004 |
Pages:
|
245-254 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a graph. A vertex subversion strategy of $G$, say $S$, is a set of vertices in $G$ whose closed neighborhood is removed from $G$. The survival-subgraph is denoted by $G/S$. The Neighbor-Integrity of $G$, $\mathop {\mathrm NI}(G)$, is defined to be $\mathop {\mathrm NI}(G) = \min _{S\subseteq V(G)} \lbrace |S|+c(G/S)\rbrace $, where $S$ is any vertex subversion strategy of $G$, and $c(G/S)$ is the maximum order of the components of $G/S$. In this paper we give some results connecting the neighbor-integrity and binary graph operations. (English) |
Keyword:
|
vulnerability |
Keyword:
|
integrity |
Keyword:
|
neighbor-integrity |
MSC:
|
05C40 |
MSC:
|
05C85 |
idZBL:
|
Zbl 1080.05515 |
idMR:
|
MR2092711 |
DOI:
|
10.21136/MB.2004.134145 |
. |
Date available:
|
2009-09-24T22:14:42Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134145 |
. |
Reference:
|
[1] Atıcı, M.; Kırlangı, A.: Counterexamples to the theorems of integrity of prisms and ladders.J. Comb. Math. Comb. Comput. 34 (2000), 119–127. MR 1772790 |
Reference:
|
[2] Bagga, K. S.; Beineke, L. W.; Goddard, W. D.; Lipman, M. J.; Pippert, R. E.: A survey of integrity.Discrete Appl. Math. 37/38 (1992), 13–28. MR 1176842, 10.1016/0166-218X(92)90122-Q |
Reference:
|
[3] Bagga, K. S.; Beineke, L. W.; Lipman, M. J.; Pippert, R. E.: Edge-integrity: a survey.Discrete Math. 124 (1994), 3–12. MR 1258837, 10.1016/0012-365X(94)90084-1 |
Reference:
|
[4] Barefoot, C. A.; Entringer, R.; Swart, H.: Vulnerability in graphs—a comparative survey.J. Comb. Math. Comb. Comput. 1 (1987), 13–22. MR 0888829 |
Reference:
|
[5] Cozzens, M. B.: Stability measures and data fusion networks.Graph Theory of New York 26 (1994), 8–14. |
Reference:
|
[6] Cozzens, M. B.; Moazzami, D.; Stueckle, S.: The tenacity of a graph.Graph theory, combinatorics, algorithms and applications, Alavi, Y. et al. (eds.), Wiley, New York, 1995, pp. 1111–1122. MR 1405887 |
Reference:
|
[7] Cozzens, M. B.; Wu, S. Y.: Edge-neighbor-integrity of trees.Australas J. Comb. 10 (1994), 163–174. MR 1296949 |
Reference:
|
[8] Cozzens, M. B.; Wu, S. Y.: Vertex-neighbor-integrity of trees.Ars. Comb. 43 (1996), 169–180. MR 1415985 |
Reference:
|
[9] Cozzens, M. B.; Wu, S. Y.: Bounds of edge-neighbor-integrity of graphs.Australas J. Comb. 15 (1997), 71–80. MR 1448231 |
Reference:
|
[10] Goddard, W.; Swart, H. C.: On the toughness of a graph.Quaest. Math. 13 (1990), 217–232. MR 1068711, 10.1080/16073606.1990.9631613 |
Reference:
|
[11] Gambrell, Marci J.: Vertex-neighbor-integrity of magnifiers, expanders and hypercubes.Discrete Math. 216 (2000), 257–266. Zbl 0957.05067, MR 1750866, 10.1016/S0012-365X(99)00352-0 |
Reference:
|
[12] Harary, F.: Graph Theory.Addison-Wesley Publishing Company, 1969. Zbl 0196.27202, MR 0256911 |
Reference:
|
[13] Kırlangı, A.: The edge-integrity of some graphs.J. Comb. Math. Comb. Comput. 37 (2001), 139–148. MR 1834438 |
Reference:
|
[14] Kırlangı, A.; Ozan, A.: The neighbour-integrity of total graphs.Int. J. Comput. Math. 76 (2000), 25–33. MR 1808796, 10.1080/00207160008805006 |
. |