Previous |  Up |  Next

Article

Title: Gauge integrals and series (English)
Author: Swartz, Charles
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 3
Year: 2004
Pages: 325-332
Summary lang: English
.
Category: math
.
Summary: This note contains a simple example which does clearly indicate the differences in the Henstock-Kurzweil, McShane and strong McShane integrals for Banach space valued functions. (English)
Keyword: Henstock-Kurzweil integral
Keyword: McShane integral
MSC: 26A39
MSC: 28B05
MSC: 46G10
idZBL: Zbl 1080.28008
idMR: MR2092718
DOI: 10.21136/MB.2004.134147
.
Date available: 2009-09-24T22:15:42Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134147
.
Reference: [1] M. Day: Normed Linear Spaces.Springer, New York, 1962. Zbl 0100.10802
Reference: [2] D. H. Fremlin: The Henstock and McShane integrals of vector-valued functions.Illinois J. Math. 38 (1994), 471–479. Zbl 0797.28006, MR 1269699, 10.1215/ijm/1255986726
Reference: [3] D. H.  Fremlin, J. Mendoza: On the integration of vector-valued functions.Illinois J. Math. 38 (1994), 127–147. MR 1245838, 10.1215/ijm/1255986891
Reference: [4] R. Gordon: The Integrals of Lebesgue, Denjoy, Perron and Henstock.Amer. Math. Soc., Providence, 1991. MR 1288751
Reference: [5] R. Gordon: The McShane integral of Banach-valued functions.Illinois J. Math. 34 (1990), 557–567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170
Reference: [6] E. Hille, R. Phillips: Functional Analysis and Semigroups.Amer. Math. Soc., Providence, 1957. MR 0089373
Reference: [7] Peng Yee Lee, R. Výborný: The Integral: an Easy Approach after Kurzweil and Henstock.Cambridge Univ. Press, Cambridge, 2000. MR 1756319
Reference: [8] E. J. McShane: Unified Integration.Academic Press, New York, 1983. Zbl 0551.28001, MR 0740710
Reference: [9] W. Pfeffer: The Riemann Approach to Integration.Cambridge Univ. Press, Cambridge, 1993. Zbl 0804.26005, MR 1268404
Reference: [10] Š. Schwabik: Abstract Bochner and McShane integrals.Ann. Math. Silesianae 10 (1996), 21–56. Zbl 0868.28005, MR 1399609
Reference: [11] Š. Schwabik, Guoju Ye: On the strong McShane integral of functions with values in a Banach space.Czechoslovak Math. J. 51 (2001), 819–828. MR 1864044, 10.1023/A:1013721114330
Reference: [12] C. Swartz: Beppo Levi’s theorem for the vector-valued McShane integral and applications.Bull. Belgian Math. Soc. 4 (1997), 589–599. Zbl 1038.46505, MR 1600292, 10.36045/bbms/1105737762
Reference: [13] C. Swartz: Infinite Matrices and the Gliding Hump.World Sci. Publ., Singapore, 1996. Zbl 0923.46003, MR 1423136
Reference: [14] C. Swartz: Introduction to Gauge Integrals.World Scientific Publ., Singapore, 2001. Zbl 0982.26006, MR 1845270
Reference: [15] Wu Congin, Yao Xiaobo: A Riemann-type definition of the Bochner integral.J. Math. Study 27 (1994), 32–36. MR 1318255
.

Files

Files Size Format View
MathBohem_129-2004-3_9.pdf 282.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo