Previous |  Up |  Next

Article

Title: On the Ward Theorem for $\mathcal{P}$-adic-path bases associated with a bounded sequence (English)
Author: Tulone, F.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 3
Year: 2004
Pages: 313-323
Summary lang: English
.
Category: math
.
Summary: In this paper we prove that each differentiation basis associated with a $\mathcal{P}$-adic path system defined by a bounded sequence satisfies the Ward Theorem. (English)
Keyword: $\mathcal{P}$-adic system
Keyword: differentiation basis
Keyword: variational measure
Keyword: Ward Theorem
MSC: 26A39
MSC: 26A42
MSC: 26A45
MSC: 28A12
idZBL: Zbl 1080.26008
idMR: MR2092717
DOI: 10.21136/MB.2004.134152
.
Date available: 2009-09-24T22:15:35Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134152
.
Reference: [1] Bongiorno, B., Di Piazza, L., Skvortsov, A. V.: The essential variation of a function and some convergence theorems.Anal. Math. 22 (1996), 3–12. MR 1384345, 10.1007/BF02342334
Reference: [2] Bongiorno, B., Di Piazza, L., Skvortsov, A. V.: On variational measures related to some bases.J. Math. Anal. Appl. 250 (2000), 533–547. MR 1786079, 10.1006/jmaa.2000.6983
Reference: [3] Bongiorno, B., Di Piazza, L., Skvortsov, A. V.: On dyadic integrals and some other integrals associated with local systems.J. Math. Anal. Appl. 271 (2002), 506–524. MR 1923649, 10.1016/S0022-247X(02)00146-4
Reference: [4] Fu, Sh.: Path Integral: An inversion of path derivatives.Real Anal. Exch. 20 (1994–95), 340–346. MR 1313697, 10.2307/44152493
Reference: [5] Golubov, B., Efimov, A., Skvortsov, A. V.: Walsh Series and Transforms: Theory and Applications.Nauka, Moskva, 1987. (Russian) MR 0925004
Reference: [6] Koroleva, M.: Generalized integrals in the theory of series with respect to multiplicative systems and Haar type system.Thesis, Moscow State University.
Reference: [7] Saks, S.: Theory of Integral.Dover, New York, 1937. MR 0167578
Reference: [8] Thomson, B. S.: Some propriety of variational measure.Real Anal. Exch. 24 (1998–99), 845–854. MR 1704758, 10.2307/44153004
.

Files

Files Size Format View
MathBohem_129-2004-3_8.pdf 325.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo