Title:
|
Convergence to equilibria in a differential equation with small delay (English) |
Author:
|
Pituk, Mihály |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
127 |
Issue:
|
2 |
Year:
|
2002 |
Pages:
|
293-299 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Consider the delay differential equation \[ \dot{x}(t)=g(x(t),x(t-r)), \qquad \mathrm{(1)}\] where $r>0$ is a constant and $g\:\mathbb{R}^2\rightarrow \mathbb{R}$ is Lipschitzian. It is shown that if $r$ is small, then the solutions of (1) have the same convergence properties as the solutions of the ordinary differential equation obtained from (1) by ignoring the delay. (English) |
Keyword:
|
delay differential equation |
Keyword:
|
equilibrium |
Keyword:
|
convergence |
MSC:
|
34K12 |
MSC:
|
34K25 |
idZBL:
|
Zbl 1016.34076 |
idMR:
|
MR1981534 |
DOI:
|
10.21136/MB.2002.134154 |
. |
Date available:
|
2012-10-05T13:03:13Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134154 |
. |
Reference:
|
[1] O. Arino, M. Pituk: More on linear differential systems with small delays.J. Differ. Equations 170 (2001), 381–407. MR 1815189, 10.1006/jdeq.2000.3824 |
Reference:
|
[2] R. D. Driver: Linear differential systems with small delays.J. Differ. Equations 21 (1976), 149–167. Zbl 0319.34067, MR 0404803 |
Reference:
|
[3] I. Györi: Interaction between oscillations and global asymptotic stability in delay differential equations.Differ. Integral Equ. 3 (1990), 181–200. MR 1014735 |
Reference:
|
[4] I. Györi, M. Pituk: Stability criteria for linear delay differential equations.Differ. Integral Equ. 10 (1997), 841–852. MR 1741755 |
Reference:
|
[5] I. Györi, M. Pituk: Special solutions of neutral functional differential equations.J. Inequal. Appl. 6 (2001), 99–117. MR 1887327 |
Reference:
|
[6] J. Hale: Theory of Functional Differential Equations.Springer, New York, 1977. Zbl 0352.34001, MR 0508721 |
Reference:
|
[7] J. Jarník, J. Kurzweil: Ryabov’s special solutions of functional differential equations.Boll. Un. Mat. Ital. 11 (1975), 198–218. MR 0454264 |
Reference:
|
[8] T. Krisztin, H.-O. Walther, J. Wu: Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Positive Feedback.Fields Institute Monograph Series, Vol. 11, Amer. Math. Soc., Providence, RI, 1999. MR 1719128 |
Reference:
|
[9] M. Pituk: Convergence to equilibria in scalar non-quasi-monotone functional differential equations.In preparation. |
Reference:
|
[10] Yu. A. Ryabov: Certain asymptotic properties of linear systems with small time lag.Trudy Sem. Teor. Differencial. Uravnenii s Otklon. Argumentom Univ. Druzby Narodov Patrica Lumumby 3 (1965), 153–164. (Russian) MR 0211010 |
Reference:
|
[11] H. L. Smith: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems.Amer. Math. Soc., Providence, RI, 1995. Zbl 0821.34003, MR 1319817 |
Reference:
|
[12] H. L. Smith, H. Thieme: Monotone semiflows in scalar non-quasi-monotone functional differential equations.J. Math. Anal. Appl. 150 (1990), 289–306. MR 1067429, 10.1016/0022-247X(90)90105-O |
. |