Previous |  Up |  Next

Article

Title: Convergence to equilibria in a differential equation with small delay (English)
Author: Pituk, Mihály
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 293-299
Summary lang: English
.
Category: math
.
Summary: Consider the delay differential equation \[ \dot{x}(t)=g(x(t),x(t-r)), \qquad \mathrm{(1)}\] where $r>0$ is a constant and $g\:\mathbb{R}^2\rightarrow \mathbb{R}$ is Lipschitzian. It is shown that if $r$ is small, then the solutions of (1) have the same convergence properties as the solutions of the ordinary differential equation obtained from (1) by ignoring the delay. (English)
Keyword: delay differential equation
Keyword: equilibrium
Keyword: convergence
MSC: 34K12
MSC: 34K25
idZBL: Zbl 1016.34076
idMR: MR1981534
DOI: 10.21136/MB.2002.134154
.
Date available: 2012-10-05T13:03:13Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134154
.
Reference: [1] O. Arino, M. Pituk: More on linear differential systems with small delays.J. Differ. Equations 170 (2001), 381–407. MR 1815189, 10.1006/jdeq.2000.3824
Reference: [2] R. D. Driver: Linear differential systems with small delays.J. Differ. Equations 21 (1976), 149–167. Zbl 0319.34067, MR 0404803
Reference: [3] I. Györi: Interaction between oscillations and global asymptotic stability in delay differential equations.Differ. Integral Equ. 3 (1990), 181–200. MR 1014735
Reference: [4] I. Györi, M. Pituk: Stability criteria for linear delay differential equations.Differ. Integral Equ. 10 (1997), 841–852. MR 1741755
Reference: [5] I. Györi, M. Pituk: Special solutions of neutral functional differential equations.J. Inequal. Appl. 6 (2001), 99–117. MR 1887327
Reference: [6] J. Hale: Theory of Functional Differential Equations.Springer, New York, 1977. Zbl 0352.34001, MR 0508721
Reference: [7] J. Jarník, J. Kurzweil: Ryabov’s special solutions of functional differential equations.Boll. Un. Mat. Ital. 11 (1975), 198–218. MR 0454264
Reference: [8] T. Krisztin, H.-O. Walther, J. Wu: Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Positive Feedback.Fields Institute Monograph Series, Vol. 11, Amer. Math. Soc., Providence, RI, 1999. MR 1719128
Reference: [9] M. Pituk: Convergence to equilibria in scalar non-quasi-monotone functional differential equations.In preparation.
Reference: [10] Yu. A. Ryabov: Certain asymptotic properties of linear systems with small time lag.Trudy Sem. Teor. Differencial. Uravnenii s Otklon. Argumentom Univ. Druzby Narodov Patrica Lumumby 3 (1965), 153–164. (Russian) MR 0211010
Reference: [11] H. L. Smith: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems.Amer. Math. Soc., Providence, RI, 1995. Zbl 0821.34003, MR 1319817
Reference: [12] H. L. Smith, H. Thieme: Monotone semiflows in scalar non-quasi-monotone functional differential equations.J. Math. Anal. Appl. 150 (1990), 289–306. MR 1067429, 10.1016/0022-247X(90)90105-O
.

Files

Files Size Format View
MathBohem_127-2002-2_17.pdf 294.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo