Previous |  Up |  Next

Article

Title: Some common asymptotic properties of semilinear parabolic, hyperbolic and elliptic equations (English)
Author: Poláčik, P.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 301-310
Summary lang: English
.
Category: math
.
Summary: We consider three types of semilinear second order PDEs on a cylindrical domain $\Omega \times (0,\infty )$, where $\Omega $ is a bounded domain in ${{\mathbb{R}}}^N$, $N\ge 2$. Among these, two are evolution problems of parabolic and hyperbolic types, in which the unbounded direction of $\Omega \times (0,\infty )$ is reserved for time $t$, the third type is an elliptic equation with a singled out unbounded variable $t$. We discuss the asymptotic behavior, as $t\rightarrow \infty $, of solutions which are defined and bounded on $\Omega \times (0,\infty )$. (English)
Keyword: parabolic equations
Keyword: elliptic equations
Keyword: hyperbolic equations
Keyword: asymptotic behavior
Keyword: center manifold
MSC: 35B40
MSC: 35G20
MSC: 35J25
MSC: 35J60
MSC: 35K55
MSC: 35L70
MSC: 37L05
idZBL: Zbl 1010.35009
idMR: MR1981535
DOI: 10.21136/MB.2002.134162
.
Date available: 2012-10-05T13:04:33Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134162
.
Reference: [1] A. V. Babin, M. I. Vishik: Attractors of Evolution Equations.North-Holland, Amsterdam, 1992. MR 1156492
Reference: [2] P. Brunovský, X. Mora, P. Poláčik, J. Solà-Morales: Asymptotic behavior of solutions of semilinear elliptic equations on an unbounded strip.Acta Math. Univ. Comenian. (N.S.) 60 (1991), 163–183. MR 1155242
Reference: [3] P. Brunovský, P. Poláčik, B. Sandstede: Convergence in general periodic parabolic equations in one space dimension.Nonlinear Anal. 18 (1992), 209–215. MR 1148285
Reference: [4] A. Calsina, X. Mora, J. Solà-Morales: The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit.J. Differ. Equations 102 (1993), 244–304. MR 1216730, 10.1006/jdeq.1993.1030
Reference: [5] X.-Y. Chen: Uniqueness of the $\omega $-limit point of solutions of a semilinear heat equation on the circle.Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), 335–337. Zbl 0641.35028, MR 0888140, 10.3792/pjaa.62.335
Reference: [6] X.-Y. Chen, H. Matano: Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations.J. Differ. Equations 78 (1989), 160–190. MR 0986159, 10.1016/0022-0396(89)90081-8
Reference: [7] X.-Y. Chen, P. Poláčik: Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball.J. Reine Angew. Math. 472 (1996), 17–51. MR 1384905
Reference: [8] E. Feireisl, P. Poláčik: Structure of periodic solutions and asymptotic behavior for time-periodic reaction-diffusion equations on R.Adv. Differ. Equations 5 (2000), 583–622. MR 1750112
Reference: [9] E. Feireisl, F. Simondon: Convergence for degenerate parabolic equations.J. Differ. Equations 152 (1999), 439–466. MR 1674569, 10.1006/jdeq.1998.3545
Reference: [10] J. K. Hale: Asymptotic Behavior of Dissipative Systems.American Mathematical Society, Providence, RI, 1988. Zbl 0642.58013, MR 0941371
Reference: [11] J. K. Hale, G. Raugel: Convergence in gradient-like systems with applications to PDE.J. Applied Math. Physics (ZAMP) 43 (1992), 63–124. MR 1149371, 10.1007/BF00944741
Reference: [12] A. Haraux, M. A. Jendoubi: Convergence of solutions of second-order gradient-like systems with analytic nonlinearities.J. Differ. Equations 144 (1998), 313–320. MR 1616968, 10.1006/jdeq.1997.3393
Reference: [13] A. Haraux, P. Poláčik: Convergence to a positive equilibrium for some nonlinear evolution equations in a ball.Acta Math. Univ. Comenian. (N.S.) 61 (1992), 129–141. MR 1205867
Reference: [14] M. A. Jendoubi: Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity.J. Differ. Equations 144 (1998), 302–312. Zbl 0912.35028, MR 1616964, 10.1006/jdeq.1997.3392
Reference: [15] M. A. Jendoubi: A simple unified approach to some convergence theorems of L. Simon.J. Funct. Anal. 153 (1998), 187–202. Zbl 0895.35012, MR 1609269, 10.1006/jfan.1997.3174
Reference: [16] M. A. Jendoubi, P. Poláčik: Nonstabilizing solutions of semilinear hyperbolic and elliptic equations with damping.Preprint.
Reference: [17] K. Kirchgässner: Wave-solutions of reversible systems and applications.J. Differ. Equations 45 (1982), 113–127. 10.1016/0022-0396(82)90058-4
Reference: [18] H. Matano: Convergence of solutions of one-dimensional semilinear parabolic equations.J. Math. Kyoto Univ. 18 (1978), 221–227. Zbl 0387.35008, MR 0501842, 10.1215/kjm/1250522572
Reference: [19] A. Mielke: Hamiltonian and Lagrangian Flows on Center Manifolds with Applications to Elliptic Variational Problems.Springer, Berlin, 1991. Zbl 0747.58001, MR 1165943
Reference: [20] A. Mielke: Essential manifolds for an elliptic problem in infinite strip.J. Differ. Equations 110 (1994), 322–355. MR 1278374, 10.1006/jdeq.1994.1070
Reference: [21] J. Palis, W. de Melo: Geometric Theory of Dynamical Systems.Springer, New York, 1982. MR 0669541
Reference: [22] P. Poláčik: Parabolic equations: asymptotic behavior and dynamics on invariant manifolds.Handbook on Dynamical Systems III: Towards Applications. Elsevier, B. Fiedler (ed.), to appear.
Reference: [23] M. A. Jendoubi, P. Poláčik: Nonstabilizing solutions of semilinear hyperbolic and elliptic equations with damping..
Reference: [24] P. Poláčik, K. P. Rybakowski: Nonconvergent bounded trajectories in semilinear heat equations.J. Differ. Equations 124 (1996), 472–494. MR 1370152, 10.1006/jdeq.1996.0020
Reference: [25] P. Poláčik, F. Simondon: Nonconvergent bounded solutions of semilinear heat equations on arbitrary domains..
Reference: [26] L. Simon: Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems.Annals Math. 118 (1983), 525–571. MR 0727703, 10.2307/2006981
Reference: [27] T. Valent: Boundary value problems of finite elasticity.Springer, New York, 1988. Zbl 0648.73019, MR 0917733
Reference: [28] P. Takáč: Stabilization of positive solutions of analytic gradient-like systems..
Reference: [29] R. Temam: Infinite-dimensional dynamical systems in mechanics and physics.Springer, New York, 1988. Zbl 0662.35001, MR 0953967
Reference: [30] A. Vanderbauwhede, G. Iooss: Center manifold theory in infinite dimensions.Dynamics Reported: Expositions in Dynamical Systems, Springer, Berlin, 1992, pp. 125–163. MR 1153030
Reference: [31] T. I. Zelenyak: Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable.Differ. Equations 4 (1968), 17–22. MR 0223758
.

Files

Files Size Format View
MathBohem_127-2002-2_18.pdf 349.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo