Previous |  Up |  Next


$N$-width; singularly perturbed; differential equation; boundary value problem; convection-diffusion; reaction-diffusion
Kolmogorov $N$-widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the $N$-widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.
[1] R. A. Adams: Sobolev Spaces. Academic Press, New York, 1975. MR 0450957 | Zbl 0314.46030
[2] J.-P. Aubin: Approximation of Elliptic Boundary-Value Problems. Wiley Interscience, New York, 1972. MR 0478662 | Zbl 0248.65063
[3] J. Bergh, J. Löfström: Interpolation Spaces. Springer, Berlin, 1976. MR 0482275
[4] P. Grisvard: Elliptic problems in nonsmooth domains. Pitman, Boston, 1985. MR 0775683 | Zbl 0695.35060
[5] R. B. Kellogg, M. Stynes: Optimal approximability of solutions of singularly perturbed two-point boundary value problems. SIAM J. Numer. Anal. 34 (1997), 1808–1816. DOI 10.1137/S0036142995290269 | MR 1472198
[6] R. B. Kellogg, M. Stynes: $N$-widths and singularly perturbed boundary value problems. SIAM J. Numer. Anal. 36 (1999), 1604–1620. DOI 10.1137/S0036142997327257 | MR 1706743
[7] R. B. Kellogg, M. Stynes: $N$-widths and singularly perturbed boundary value problems II. SIAM J. Numer. Anal. 39 (2001), 690–707. DOI 10.1137/S0036142900371489 | MR 1860257
[8] G. G. Lorentz: Approximation of Functions. 2nd edition, Chelsea Publishing Company, New York, 1986. MR 0917270 | Zbl 0643.41001
[9] J. M. Melenk: On $N$-widths for elliptic problems. J. Math. Anal. Appl. 247 (2000), 272–289. DOI 10.1006/jmaa.2000.6862 | MR 1766938 | Zbl 0963.35047
[10] J. T. Oden, J. N. Reddy: An Introduction to the Mathematical Theory of Finite Elements. Wiley-Interscience, New York, 1976. MR 0461950
[11] A. Pinkus: $N$-Widths in Approximation Theory. Springer, Berlin, 1985. MR 0774404 | Zbl 0551.41001
[12] H.-G. Roos, M. Stynes, L. Tobiska: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin, 1996. MR 1477665
[13] G. Sun, M. Stynes: Finite-element methods for singularly perturbed high-order elliptic two-point boundary value problems I: reaction-diffusion-type problems. IMA J. Numer. Anal. 15 (1995), 117–139. DOI 10.1093/imanum/15.1.117 | MR 1311341
Partner of
EuDML logo