Previous |  Up |  Next

Article

Keywords:
a priori estimate; blow-up rate; periodic solution; multiplicity
Summary:
We review some recent results concerning a priori bounds for solutions of superlinear parabolic problems and their applications.
References:
[1] H. Amann, P. Quittner: Elliptic boundary value problems involving measures: existence, regularity, and multiplicity. Adv. Differ. Equ. 3 (1998), 753–813. MR 1659273
[2] P. Baras, L. Cohen: Complete blow-up after $T_{\max }$ for the solution of a semilinear heat equation. J. Funct. Anal. 71 (1987), 142–174. MR 0879705
[3] P. Baras, M. Pierre: Critère d’existence de solutions positives pour des équations semi-linéaires non monotones. Analyse Non Linéaire, Ann. Inst. H. Poincaré 2 (1985), 185–212. MR 0797270 | Zbl 0599.35073
[4] M.-F. Bidaut-Véron: Initial blow-up for the solutions of a semilinear parabolic equation with source term. Equations aux dérivées partielles et applications, articles dédiés à Jacques-Louis Lions, Gauthier-Villars, Paris, 1998, pp. 189–198. MR 1648222
[5] H. Brézis, R. E. L. Turner: On a class of superlinear elliptic problems. Commun. Partial Differ. Equations 2 (1977), 601–614. MR 0509489
[6] T. Cazenave, P.-L. Lions: Solutions globales d’équations de la chaleur semi linéaires. Commun. Partial Differ. Equations 9 (1984), 955–978. MR 0755928
[7] M. Chipot, M. Fila, P. Quittner: Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions. Acta Math. Univ. Comen. 60 (1991), 35–103. MR 1120596
[8] M. J. Esteban: On periodic solutions of superlinear parabolic problems. Trans. Amer. Math. Soc. 293 (1986), 171–189. MR 0814919 | Zbl 0619.35058
[9] M. J. Esteban: A remark on the existence of positive periodic solutions of superlinear parabolic problems. Proc. Amer. Math. Soc. 102 (1988), 131–136. MR 0915730 | Zbl 0653.35039
[10] C. Fermanian Kammerer, F. Merle, H. Zaag: Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view. Math. Ann. 317 (2000), 347–387. MR 1764243
[11] D. G. de Figueiredo, P.-L. Lions, R. D. Nussbaum: A priori estimates and existence of positive solutions of semilinear elliptic equations. J. Math. Pures Appl. 61 (1982), 41–63. MR 0664341
[12] M. Fila: Boundedness of global solutions of nonlinear parabolic problems. Proc. of the 4th European Conf. on Elliptic and Parabolic Problems, Rolduc 2001, to appear.
[13] M. Fila, P. Poláčik: Global solutions of a semilinear parabolic equation. Adv. Differ. Equ. 4 (1999), 163–196. MR 1674359
[14] M. Fila, P. Souplet, F. Weissler: Linear and nonlinear heat equations in $L^q_\delta $ spaces and universal bounds for global solutions. Math. Ann. 320 (2001), 87–113. MR 1835063
[15] S. Filippas, M. A. Herrero, J. J. L. Velázquez: Fast blow-up mechanism for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity. R. Soc. Lond. Proc. Ser. A 456 (2000), 2957–2982. MR 1843848
[16] V. Galaktionov, J. L. Vázquez: Continuation of blow-up solutions of nonlinear heat equations in several space dimensions. Commun. Pure Applied Math. 50 (1997), 1–67.
[17] B. Gidas, J. Spruck: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Partial Differ. Equations 6 (1981), 883–901. MR 0619749
[18] Y. Giga: A bound for global solutions of semilinear heat equations. Commun. Math. Phys. 103 (1986), 415–421. MR 0832917 | Zbl 0595.35057
[19] Y. Giga, R. V. Kohn: Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36 (1987), 1–40. MR 0876989
[20] M. A. Herrero, J. J. L. Velázquez: Explosion de solutions d’équations paraboliques semilinéaires supercritiques. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 141–145. MR 1288393
[21] M. A. Herrero, J. J. L. Velázquez: A blow up result for semilinear heat equations in the supercritical case. Preprint.
[22] J. Húska: Periodic solutions in superlinear parabolic problems. Acta Math. Univ. Comen (to appear). MR 1943012
[23] H. A. Levine: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+F(u)$. Arch. Rational Mech. Anal. 51 (1973), 371–386. MR 0348216
[24] J. Matos, Ph. Souplet: Universal blow-up estimates and decay rates for a semilinear heat equation. Preprint.
[25] W.-M. Ni, P. E. Sacks, J. Tavantzis: On the asymptotic behavior of solutions of certain quasilinear parabolic equations. J. Differ. Equations 54 (1984), 97–120. MR 0756548
[26] R. D. Nussbaum: Positive solutions of nonlinear elliptic boundary value problems. J. Math. Anal. Appl. 51 (1975), 461–482. MR 0382850 | Zbl 0304.35047
[27] S. I. Pohozaev: Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$. Soviet Math. Dokl. 5 (1965), 1408–1411. MR 0192184
[28] P. Quittner: A priori bounds for global solutions of a semilinear parabolic problem. Acta Math. Univ. Comen. 68 (1999), 195–203. MR 1757788 | Zbl 0940.35112
[29] P. Quittner: A priori estimates of global solutions and multiple equilibria of a superlinear parabolic problem involving measure. Electronic J. Differ. Equations 2001 (2001), no. 29, 1–17. MR 1836797
[30] P. Quittner: Universal bound for global positive solutions of a superlinear parabolic problem. Math. Ann. 320 (2001), 299–305. MR 1839765 | Zbl 0981.35010
[31] P. Quittner: Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems. Houston J. Math (to appear). MR 1998164 | Zbl 1034.35013
[32] P. Quittner: Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems. NoDEA, Nonlinear Differ. Equations Appl (to appear). MR 2210288 | Zbl 1058.35120
[33] P. Quittner, Ph. Souplet: A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete Contin. Dyn. Systems (to appear). MR 1974428
[34] P. Quittner, Ph. Souplet: Bounds of solutions of parabolic problems with nonlinear boundary conditions. In preparation.
[35] P. Quittner, Ph. Souplet, M. Winkler: Initial blow-up rates and universal bounds for nonlinear heat equations. Preprint. MR 2028111
[36] R. E. L. Turner: A priori bounds for positive solutions of nonlinear elliptic equations in two variables. Duke Math. J. 41 (1974), 759–774. MR 0364859 | Zbl 0294.35033
[37] H. Zaag: A remark on the energy blow-up behavior for nonlinear heat equations. Duke Math. J. 103 (2000), 545–556. MR 1763658 | Zbl 0971.35042
Partner of
EuDML logo