Previous |  Up |  Next

Article

Title: An introduction to hierarchical matrices (English)
Author: Hackbusch, Wolfgang
Author: Grasedyck, Lars
Author: Börm, Steffen
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 229-241
Summary lang: English
.
Category: math
.
Summary: We give a short introduction to a method for the data-sparse approximation of matrices resulting from the discretisation of non-local operators occurring in boundary integral methods or as the inverses of partial differential operators. The result of the approximation will be the so-called hierarchical matrices (or short $\mathcal {H}$-matrices). These matrices form a subset of the set of all matrices and have a data-sparse representation. The essential operations for these matrices (matrix-vector and matrix-matrix multiplication, addition and inversion) can be performed in, up to logarithmic factors, optimal complexity. (English)
Keyword: hierarchical matrices
Keyword: data-sparse approximations
Keyword: formatted matrix operations
Keyword: fast solvers
MSC: 15A57
MSC: 65F05
MSC: 65F30
MSC: 65F50
MSC: 65N22
MSC: 65N38
MSC: 65N50
MSC: 65Y20
idZBL: Zbl 1007.65032
idMR: MR1981528
DOI: 10.21136/MB.2002.134156
.
Date available: 2012-10-05T12:57:37Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134156
.
Reference: [1] I. P. Gavrilyuk, W. Hackbusch, B. N. Khoromskij: $H$-matrix approximation for the operator exponential with applications.Numer. Math (to appear). MR 1917366
Reference: [2] I. P. Gavrilyuk, W. Hackbusch, B. N. Khoromskij: $H$-matrix approximation for elliptic solution operators in cylindric domains.East-West J. Numer. Math. 9 (2001), 25–58. MR 1839197
Reference: [3] L. Grasedyck: Theorie und Anwendungen Hierarchischer Matrizen.Doctoral thesis, University Kiel, 2001.
Reference: [4] W. Hackbusch: A sparse matrix arithmetic based on $H$-Matrices. Part I: Introduction to $H$-Matrices.Computing 62 (1999), 89–108. MR 1694265, 10.1007/s006070050015
Reference: [5] W. Hackbusch, Z. P. Nowak: On the fast matrix multiplication in the boundary element method by panel clustering.Numer. Math. 54 (1989), 463–491. MR 0972420, 10.1007/BF01396324
Reference: [6] W. Hackbusch, B. N. Khoromskij: A sparse $H$-matrix arithmetic. Part II: Application to multi-dimensional problems.Computing 64 (2000), 21–47. MR 1755846
Reference: [7] W. Hackbusch, B. N. Khoromskij: A sparse $H$-matrix arithmetic: general complexity estimates.J. Comput. Appl. Math. 125 (2000), 479–501. MR 1803209, 10.1016/S0377-0427(00)00486-6
Reference: [8] W. Hackbusch, B. N. Khoromskij, S. A. Sauter: On $H^{2}$-matrices.Lectures on applied mathematics, Hans-Joachim Bungartz, Ronald H. W. Hoppe, Christoph Zenger (eds.), Springer, Berlin, 2000, pp. 9–29. MR 1767775
Reference: [9] W. Hackbusch, B. N. Khoromskij: $H$-matrix approximation on graded meshes.The Mathematics of Finite Elements and Applications X, MAFELAP 1999, John R. Whiteman (ed.), Elsevier, Amsterdam, 2000, pp. 307–316. MR 1801984
Reference: [10] E. Tyrtyshnikov: Mosaic-skeleton approximation.Calcolo 33 (1996), 47–57. MR 1632459, 10.1007/BF02575706
.

Files

Files Size Format View
MathBohem_127-2002-2_11.pdf 368.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo