Previous |  Up |  Next

Article

Title: Rectifiability and perimeter in step 2 Groups (English)
Author: Franchi, Bruno
Author: Serapioni, Raul
Author: Cassano, Francesco Serra
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 219-228
Summary lang: English
.
Category: math
.
Summary: We study finite perimeter sets in step 2 Carnot groups. In this way we extend the classical De Giorgi’s theory, developed in Euclidean spaces by De Giorgi, as well as its generalization, considered by the authors, in Heisenberg groups. A structure theorem for sets of finite perimeter and consequently a divergence theorem are obtained. Full proofs of these results, comments and an exhaustive bibliography can be found in our preprint (2001). (English)
Keyword: Carnot groups
Keyword: perimeter
Keyword: rectifiability
Keyword: divergence theorem
MSC: 22E30
MSC: 49Q15
idZBL: Zbl 1018.49029
idMR: MR1981527
DOI: 10.21136/MB.2002.134175
.
Date available: 2012-10-05T12:56:52Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134175
.
Reference: [1] L. Ambrosio: Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces.Adv. Math. 159 (2001), 51–67. Zbl 1002.28004, MR 1823840, 10.1006/aima.2000.1963
Reference: [2] E. De Giorgi: Su una teoria generale della misura $(r-1)$-dimensionale in uno spazio ad $r$ dimensioni.Ann. Mat. Pura Appl. 36 (1954), 191–213. Zbl 0055.28504, MR 0062214, 10.1007/BF02412838
Reference: [3] E. De Giorgi: Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazio ad $r$ dimensioni.Ricerche Mat. 4 (1955), 95–113. Zbl 0066.29903, MR 0074499
Reference: [4] H. Federer: Geometric Measure Theory.Springer, 1969. Zbl 0176.00801, MR 0257325
Reference: [5] G. B.Folland, E. M. Stein: Hardy Spaces on Homogeneous Groups.Princeton University Press, 1982. Zbl 0508.42025, MR 0657581
Reference: [6] B. Franchi, R. Serapioni, F. Serra Cassano: Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields.Houston J. Math. 22 (1996), 859–889. MR 1437714
Reference: [7] B. Franchi, R. Serapioni, F. Serra Cassano: Rectifiability and perimeter in the Heisenberg group.Math. Ann. 321 (2001), 479–531. MR 1871966, 10.1007/s002080100228
Reference: [8] B. Franchi, R. Serapioni, F. Serra Cassano: Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups.Preprint (2001). MR 2032504
Reference: [9] B. Franchi, R. Serapioni, F. Serra Cassano: On the structure of finite perimeter sets in step 2 Carnot groups.Preprint (2001). MR 1984849
Reference: [10] N. Garofalo, D. M. Nhieu: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces.Comm. Pure Appl. Math. 49 (1996), 1081–1144. MR 1404326, 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A
Reference: [11] M. Gromov: Metric Structures for Riemannian and non Riemannian Spaces.vol. 152, Progress in Mathematics, Birkhauser, Boston, 1999. Zbl 0953.53002, MR 1699320
Reference: [12] J. Heinonen: Calculus on Carnot groups.Ber., Univ. Jyväskylä 68 (1995), 1–31. Zbl 0863.22009, MR 1351042
Reference: [13] A. Korányi, H. M. Reimann: Foundation for the theory of quasiconformal mappings on the Heisenberg group.Adv. Math. 111 (1995), 1–87. 10.1006/aima.1995.1017
Reference: [14] J. Mitchell: On Carnot-Carathéodory metrics.J. Differ. Geom. 21 (1985), 35–45. Zbl 0554.53023, MR 0806700, 10.4310/jdg/1214439462
Reference: [15] R. Monti, F. Serra Cassano: Surface measures in Carnot-Carathéodory spaces.Calc. Var. Partial Differ. Equ (to appear). MR 1865002
Reference: [16] P. Pansu: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un.Ann. Math. 129 (1989), 1–60. Zbl 0678.53042, MR 0979599, 10.2307/1971484
Reference: [17] E. Sawyer, R. L. Wheeden: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces.Amer. J. Math. 114 (1992), 813–874. MR 1175693, 10.2307/2374799
.

Files

Files Size Format View
MathBohem_127-2002-2_10.pdf 380.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo