[1] A. Anane: Etude des valeurs propres et de la résonance pour l’opérateur $p$-Laplacien. Thése de doctorat, U.L.B., 1987–1988.
[3] M. Del Pino, P. Drábek, R. Manásevich:
The Fredholm alternative at the first eigenvalue for the one-dimensional $p$-Laplacian. J. Differ. Equations 151 (1999), 386–419.
DOI 10.1006/jdeq.1998.3506 |
MR 1669705
[5] P. Drábek: Geometry of the energy functional and the Fredholm alternative for the $p$-Laplacian in more dimensions. (to appear).
[6] P. Drábek, P. Girg, R. Manásevich:
Generic Fredholm alternative for the one dimensional $p$-Laplacian. Nonlin. Differ. Equations Appl. 8 (2001), 285–298.
DOI 10.1007/PL00001449 |
MR 1841260
[7] P. Drábek, G. Holubová:
Fredholm alternative for the $p$-Laplacian in higher dimensions. (to appear).
MR 1864314
[8] P. Drábek, P. Krejčí, P. Takáč:
Nonlinear Differential Equations. Chapman & Hall/CRC, Boca Raton, 1999.
MR 1695376
[9] P. Drábek, A. Kufner, F. Nicolosi:
Quasilinear Elliptic Equations with Degenerations and Singularities. De Gruyter Series in Nonlinear Anal. and Appl. 5, Walter de Gruyter, Berlin, New York, 1997.
MR 1460729
[12] J. Fleckinger-Pellé, P. Takáč:
An improved Poincaré inequality and the $p$-Laplacian at resonance for $p>2$. Preprint.
MR 1895113
[13] E. M. Landesman, A. C. Lazer:
Nonlinear perturbations of linear elliptic boundary value problems at resonance. J. Math. Mech. 19 (1970), 609–623.
MR 0267269
[14] G. Liebermann: Boundary regularity for solutions of degenerate elliptic equations. Nonlin. Anal. 12 (1998), 1203–1219.
[16] R. Manásevich, P. Takáč:
On the Fredholm alternative for the $p$-Laplacian in one dimension. Preprint.
MR 1881394
[17] P. Takáč:
On the Fredholm alternative for the $p$-Laplacian at the first eigenvalue. Preprint.
MR 1896161
[18] P. Takáč:
On the number and structure of solutions for a Fredholm alternative with $p$-Laplacian. Preprint.
MR 1935641