[1] R. P. Agarwal:
Difference Equations and Inequalities, Theory, Methods and Applications. Second Edition, M. Dekker, New York, 2000.
MR 1740241 |
Zbl 0952.39001
[4] I. Bihari:
On the second order half-linear differential equation. Studia Sci. Math. Hungar. 3 (1968), 411–437.
MR 0267190 |
Zbl 0167.37403
[5] I. Bihari:
An oscillation theorem concerning the half-linear differential equation of the second order. Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 275–279.
MR 0171959
[6] O. Borůvka: Lineare Differentialtransformationen 2. Ordnung, Deutscher Verlag der Wissenschaften, Berlin, 1961.
[7] M. Cecchi, Z. Došlá, M. Marini:
On nonoscillatory solutions of differential equations with $p$-Laplacian. Advances Math. Sci. Appl. 11 (2001), 419–436.
MR 1842385
[8] M. Cecchi, Z. Došlá, M. Marini: Minimal sets for quasilinear differential equations. Submitted.
[9] M. Cecchi, M. Marini, G. Villari:
Integral criteria for a classification of solutions of linear differential equations. J. Differ. Equations 99 (1992), 381–399.
DOI 10.1016/0022-0396(92)90027-K |
MR 1184060
[10] M. Cuesta, D. de Figuiredo, J.-P. Gossez:
The beginning of the Fučík spectrum for the $p$-Laplacian. J. Differ. Equations 159 (1999), 212–238.
DOI 10.1006/jdeq.1999.3645 |
MR 1726923
[11] J. I. Díaz:
Nonlinear Partial Differential Equations and Free Boundaries. Vol I. Elliptic Equations, Pitman, London, 1985.
MR 0853732
[13] O. Došlý:
A remark on conjugacy of half-linear second order differential equations. Math. Slovaca 50 (2000), 67–79.
MR 1764346
[15] O. Došlý:
Half-linear oscillation theory. Studies Univ. Žilina, Math.-Phys. Ser. 13 (2001), 65–73.
MR 1874005 |
Zbl 1040.34040
[16] O. Došlý, Á. Elbert:
Integral characterization of principal solution of half-linear differential equations. Studia Sci. Math. Hungar. 36 (2000), 455–469.
MR 1798750
[17] O. Došlý, A. Lomtatidze: Oscillation and nonoscillation criteria for half-linear second order differential equations. Submitted.
[19] O. Došlý, J. Řezníčková: Regular half-linear second order differential equations. Submitted.
[20] P. Drábek:
Fredholm alternative for the $p$-Laplacian: yes or no? Function Spaces, Differential Operators and Nonlinear Analysis. Proceedings of the conference FSDONA-99, Syöte, Finland, June 10–16, 1999, Prague, Mustonen, Vesa at al (ed.), Mathematical Institute of the Academy of Sciences of the Czech Republic, 2000, pp. 57–64.
MR 1755297
[21] Á. Elbert: A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 30 (1979), 158–180.
[22] Á. Elbert:
The Wronskian and the half-linear differential equations. Studia Sci. Math. Hungar. 15 (1980), 101–105.
MR 0681431 |
Zbl 0522.34034
[23] Á. Elbert:
Oscillation and nonoscillation theorems for some non-linear ordinary differential equations. Lectures Notes Math. 964 (1982), 187–212.
DOI 10.1007/BFb0064999
[24] Á. Elbert:
Asymptotic behaviour of autonomous half-linear differential systems on the plane. Studia Sci. Math. Hungar. 19 (1984), 447–464.
MR 0874513 |
Zbl 0629.34066
[25] Á. Elbert, T. Kusano: Principal solutions of nonoscillatory half-linear differential equations. Advances Math. Sci. Appl. 18 (1998), 745–759.
[26] R. Emden: Gaskugeln, Anwendungen der mechanischen Warmentheorie auf Kosmologie und metheorologische Probleme. Leibzig, 1907.
[27] R. H. Fowler:
The solutions of Emden’s and similar differential equations. Monthly Notices Roy. Astronom. Soc. 91 (1930), 63–91.
DOI 10.1093/mnras/91.1.63
[29] J. Jaroš, T. Kusano:
A Picone type identity for half-linear differential equations. Acta Math. Univ. Comen. 68 (1999), 137–151.
MR 1711081
[30] J. Jaroš, T. Kusano, N. Yosida:
A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of the second order. Nonlin. Anal., Theory Methods Appl. 40 (2000), 381–395.
DOI 10.1016/S0362-546X(00)85023-3 |
MR 1768900
[31] W. G. Kelley, A. Peterson:
Difference Equations: An Introduction with Applications. Acad. Press, San Diego, 1991.
MR 1142573
[32] T. Kusano, Y. Naito:
Oscillation and nonoscillation criteria for second order quasilinear differential equations. Acta. Math. Hungar. 76 (1997), 81–99.
DOI 10.1007/BF02907054 |
MR 1459772
[33] T. Kusano, Y. Naito, A. Ogata:
Strong oscillation and nonoscillation of quasilinear differential equations of second order. Diff. Equations Dyn. Syst. 2 (1994), 1–10.
MR 1386034
[37] J. D. Mirzov:
Principal and nonprincipal solutions of a nonoscillatory system. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117.
MR 1001343
[39] G. Sansone:
Equazioni diferenziali nel campo reale I, II. Zanichelli, Bologna, 1949.
MR 0030663
[40] L. H. Thomas: The calculation of atomic fields. Proc. Cambridge Phil. Soc. 23 (1927), 542–548.