Previous |  Up |  Next

Article

Keywords:
half-linear equation; Picone’s identity; scalar $p$-Laplacian; variational method; Riccati technique; principal solution
Summary:
Some recent results concerning properties of solutions of the half-linear second order differential equation \[ (r(t)\Phi (x^{\prime }))^{\prime }+c(t)\Phi (x)=0,\quad \Phi (x):=|x|^{p-2}x,\quad p>1, \qquad \mathrm{{(*)}}\] are presented. A particular attention is paid to the oscillation theory of $(*)$. Related problems are also discussed.
References:
[1] R. P. Agarwal: Difference Equations and Inequalities, Theory, Methods and Applications. Second Edition, M. Dekker, New York, 2000. MR 1740241 | Zbl 0952.39001
[2] W. Allegretto, Y. X. Huang: A Picone’s identity for the $p$-Laplacian and applications. Nonlin. Anal. 32 (1998), 819–830. DOI 10.1016/S0362-546X(97)00530-0 | MR 1618334
[3] W. Allegretto, Y. X. Huang: Principal eigenvalues and Sturm comparison via Picone’s identity. J. Differ. Equations 156 (1999), 427–438. DOI 10.1006/jdeq.1998.3596 | MR 1705379
[4] I. Bihari: On the second order half-linear differential equation. Studia Sci. Math. Hungar. 3 (1968), 411–437. MR 0267190 | Zbl 0167.37403
[5] I. Bihari: An oscillation theorem concerning the half-linear differential equation of the second order. Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 275–279. MR 0171959
[6] O. Borůvka: Lineare Differentialtransformationen 2. Ordnung, Deutscher Verlag der Wissenschaften, Berlin, 1961.
[7] M. Cecchi, Z. Došlá, M. Marini: On nonoscillatory solutions of differential equations with $p$-Laplacian. Advances Math. Sci. Appl. 11 (2001), 419–436. MR 1842385
[8] M. Cecchi, Z. Došlá, M. Marini: Minimal sets for quasilinear differential equations. Submitted.
[9] M. Cecchi, M. Marini, G. Villari: Integral criteria for a classification of solutions of linear differential equations. J. Differ. Equations 99 (1992), 381–399. DOI 10.1016/0022-0396(92)90027-K | MR 1184060
[10] M. Cuesta, D. de Figuiredo, J.-P. Gossez: The beginning of the Fučík spectrum for the $p$-Laplacian. J. Differ. Equations 159 (1999), 212–238. DOI 10.1006/jdeq.1999.3645 | MR 1726923
[11] J. I. Díaz: Nonlinear Partial Differential Equations and Free Boundaries. Vol I. Elliptic Equations, Pitman, London, 1985. MR 0853732
[12] O. Došlý: Oscillation criteria for half-linear second order differential equations. Hiroshima J. Math. 28 (1998), 507–521. DOI 10.32917/hmj/1206126680 | MR 1657543
[13] O. Došlý: A remark on conjugacy of half-linear second order differential equations. Math. Slovaca 50 (2000), 67–79. MR 1764346
[14] O. Došlý: Methods of oscillation theory of half-linear second order differential equations. Czechoslovak Math. J. 50 (2000), 657–671. DOI 10.1023/A:1022854131381 | MR 1777486
[15] O. Došlý: Half-linear oscillation theory. Studies Univ. Žilina, Math.-Phys. Ser. 13 (2001), 65–73. MR 1874005 | Zbl 1040.34040
[16] O. Došlý, Á. Elbert: Integral characterization of principal solution of half-linear differential equations. Studia Sci. Math. Hungar. 36 (2000), 455–469. MR 1798750
[17] O. Došlý, A. Lomtatidze: Oscillation and nonoscillation criteria for half-linear second order differential equations. Submitted.
[18] O. Došlý, R. Mařík,: Nonexistence of positive solutions of PDE’s with $p$-Laplacian. Acta Math. Hungar. 90 (2001), 89–107. DOI 10.1023/A:1006739909182 | MR 1910321
[19] O. Došlý, J. Řezníčková: Regular half-linear second order differential equations. Submitted.
[20] P. Drábek: Fredholm alternative for the $p$-Laplacian: yes or no? Function Spaces, Differential Operators and Nonlinear Analysis. Proceedings of the conference FSDONA-99, Syöte, Finland, June 10–16, 1999, Prague, Mustonen, Vesa at al (ed.), Mathematical Institute of the Academy of Sciences of the Czech Republic, 2000, pp. 57–64. MR 1755297
[21] Á. Elbert: A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 30 (1979), 158–180.
[22] Á. Elbert: The Wronskian and the half-linear differential equations. Studia Sci. Math. Hungar. 15 (1980), 101–105. MR 0681431 | Zbl 0522.34034
[23] Á. Elbert: Oscillation and nonoscillation theorems for some non-linear ordinary differential equations. Lectures Notes Math. 964 (1982), 187–212. DOI 10.1007/BFb0064999
[24] Á. Elbert: Asymptotic behaviour of autonomous half-linear differential systems on the plane. Studia Sci. Math. Hungar. 19 (1984), 447–464. MR 0874513 | Zbl 0629.34066
[25] Á. Elbert, T. Kusano: Principal solutions of nonoscillatory half-linear differential equations. Advances Math. Sci. Appl. 18 (1998), 745–759.
[26] R. Emden: Gaskugeln, Anwendungen der mechanischen Warmentheorie auf Kosmologie und metheorologische Probleme. Leibzig, 1907.
[27] R. H. Fowler: The solutions of Emden’s and similar differential equations. Monthly Notices Roy. Astronom. Soc. 91 (1930), 63–91. DOI 10.1093/mnras/91.1.63
[28] P. Hartman: Ordinary Differential Equations. John Wiley & Sons New York, 1964. MR 0171038 | Zbl 0125.32102
[29] J. Jaroš, T. Kusano: A Picone type identity for half-linear differential equations. Acta Math. Univ. Comen. 68 (1999), 137–151. MR 1711081
[30] J. Jaroš, T. Kusano, N. Yosida: A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of the second order. Nonlin. Anal., Theory Methods Appl. 40 (2000), 381–395. DOI 10.1016/S0362-546X(00)85023-3 | MR 1768900
[31] W. G. Kelley, A. Peterson: Difference Equations: An Introduction with Applications. Acad. Press, San Diego, 1991. MR 1142573
[32] T. Kusano, Y. Naito: Oscillation and nonoscillation criteria for second order quasilinear differential equations. Acta. Math. Hungar. 76 (1997), 81–99. DOI 10.1007/BF02907054 | MR 1459772
[33] T. Kusano, Y. Naito, A. Ogata: Strong oscillation and nonoscillation of quasilinear differential equations of second order. Diff. Equations Dyn. Syst. 2 (1994), 1–10. MR 1386034
[34] H. J. Li, Ch. Ch. Yeh: Oscillations of half-linear second order differential equations. Hiroshima Math. J. 25 (1995), 585–594. DOI 10.32917/hmj/1206127634 | MR 1364076
[35] M. Marini, P. Zezza: On the asymptotic behavior of the solutions of second order linear differential equations. J. Differ. Equations 28 (1978), 1–17. DOI 10.1016/0022-0396(78)90075-X | MR 0466748
[36] J. D. Mirzov: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 53 (1976), 418–425. DOI 10.1016/0022-247X(76)90120-7 | MR 0402184 | Zbl 0327.34027
[37] J. D. Mirzov: Principal and nonprincipal solutions of a nonoscillatory system. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. MR 1001343
[38] P. Řehák: Oscillatory properties of second order half-linear difference equations. Czechoslovak Math. J. 51 (2001), 303–321. DOI 10.1023/A:1013790713905 | MR 1844312 | Zbl 0982.39004
[39] G. Sansone: Equazioni diferenziali nel campo reale I, II. Zanichelli, Bologna, 1949. MR 0030663
[40] L. H. Thomas: The calculation of atomic fields. Proc. Cambridge Phil. Soc. 23 (1927), 542–548.
Partner of
EuDML logo