Previous |  Up |  Next

Article

Keywords:
colouring multidimensional maps; four colour theorem; chromatic number; tetrahedralization; convex polytopes; finite element methods; domain decomposition methods; parallel programming; combinatorial geometry; six colour conjecture
Summary:
We consider face-to-face partitions of bounded polytopes into convex polytopes in $\mathbb{R}^d$ for arbitrary $d\ge 1$ and examine their colourability. In particular, we prove that the chromatic number of any simplicial partition does not exceed $d+1$. Partitions of polyhedra in $\mathbb{R}^3$ into pentahedra and hexahedra are $5$- and $6$-colourable, respectively. We show that the above numbers are attainable, i.e., in general, they cannot be reduced.
References:
[1] K. Appel, W. Haken: Every planar map is four colorable. Bull. Amer. Math. Soc. 82 (1976), 711–712. MR 0424602
[2] K. Appel, W. Haken: Every planar map is four colorable. I. Discharging. Illinois J. Math. 21 (1977), 429–490. MR 0543792
[3] K. Appel, W. Haken, J. Koch: Every planar map is four colorable. II. Reducibility. Illinois J. Math. 21 (1977), 491–567. MR 0543793
[4] R. E. Bank: PLTMG: A Software Package for Solving Partial Differential Equations: Users’ Guide 7.0. SIAM, Philadelphia, 1994. MR 1262123
[5] D. W. Barnette: Coloring polyhedral manifolds. Proc. Conf. Discrete Geometry and Convexity, Ann. N. Y. Acad. Sci. 440 (1985), 192–195. MR 0809206 | Zbl 0571.05018
[6] J. H. Brandts: Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer. Math. 68 (1994), 311–324. MR 1313147 | Zbl 0823.65103
[7] R. Fritsch, G. Fritsch: The Four-Color Theorem. Springer, Berlin, 1998. MR 1633950
[8] J. L. Gross, T. W. Tucker: Topological Graph Theory. John Wiley & Sons, New York, 1987. MR 0898434
[9] B. Grünbaum: Grötzch’s theorem on 3-coloring. Michigan Math. J. 10 (1963), 303–310. MR 0154274
[10] F. Harary: Graph Theory. Addison-Wesley, London, 1972. MR 0256911
[11] P. J. Heawood: Map colour theorems. Quart. J. Math. 24 (1890), 332–338.
[12] M. Křížek: An equilibrium finite element method in three-dimensional elasticity. Apl. Mat. 27 (1982), 46–75. MR 0640139
[13] M. Křížek, P. Neittaanmäki: Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics vol. 50, Longman Scientific & Technical, Harlow, 1990. MR 1066462
[14] M. Křížek, P. Neittaanmäki, R. Stenberg (eds.): Finite Element Methods: Superconvergence, Postprocessing, and A Posteriori Estimates. Proc. Conf., Jyväskylä, 1996, LN in Pure and Appl. Math. vol. 196, Marcel Dekker, New York, 1998. MR 1602809
[15] K. Kuratowski: Sur le problème des courbes gauches en topologie. Fund. Math. 15 (1930), 217–283.
[16] L. Lovász: Three short proofs in graph theory. J. Combin. Theory Ser. B 19 (1975), 269–271. MR 0396344
[17] J. Mayer: Le problème des régions voisines sur les surfaces closes orientables. J. Comb. Theory Ser. B 6 (1969), 177–195. MR 0234863 | Zbl 0182.26601
[18] G. Ringel: Map Color Theorem. Springer, Berlin, 1974. MR 0349461 | Zbl 0287.05102
[19] G. Ringel, J. W. T. Youngs: Solution of the Heawood map-coloring problem. Proc. Natl. Acad. Sci. USA 60 (1968), 438–445. MR 0228378
[20] N. Robertson, D. P. Sanders, P. D. Seymour, R. Thomas: The four color theorem. J. Combin. Theory Ser. B 70 (1997), 2–44. MR 1441258
[21] F. Rubin: An improved algorithm for testing the planarity of a graph. IEEE Trans. Comput. c-24 (1975), 113–121. MR 0414407 | Zbl 0297.68030
[22] E. Schutle: Tilings. Handbook of Convex Geometry (Gruber P. M. , Will, J. M., eds.), Vol. B, North-Holland, Amsterdam, 1993. MR 1242973
[23] O. Shishkina: Three-colour parallel multilevel preconditioner. Syst. Anal. Modelling Simulation 24 (1996), 255–261. Zbl 0935.65045
[24] W. T. Tutte: Graph Theory. Addison-Wesley, London, 1984. MR 0746795 | Zbl 0554.05001
Partner of
EuDML logo