Previous |  Up |  Next


zero-pressure gas dynamics; measure solutions uniqueness; entropy condition; cohesion condition; generalized characteristics
The system of zero-pressure gas dynamics conservation laws describes the dynamics of free particles sticking under collision while mass and momentum are conserved. The existence of such solutions was established some time ago. Here we report a uniqueness result that uses the Oleinik entropy condition and a cohesion condition. Both of these conditions are automatically satisfied by solutions obtained in previous existence results. Important tools in the proof of uniqueness are regularizations, generalized characteristics and flow maps. The solutions may contain vacuum states as well as singular measures.
[1] R. K. Agarwal, D. W. Halt: A modified CUSP scheme in wave/particle split form for unstructed grid Euler flow. Frontiers of Computational Fluid Dynamics 1994, D. A. Caughey, M. M. Hafez (eds.), Wiley, Chichester, 1995, pp. 155–163.
[2] F. Bouchut: On zero pressure gas dynamics. Advances in kinetic theory and computing, Series on Advances in Mathematics for Applied Sciences 22, World Scientific, Singapore, 1994, 171–190. MR 1323183 | Zbl 0863.76068
[3] Y. Brenier, E. Grenier: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35 (1998), 2317–2328. DOI 10.1137/S0036142997317353 | MR 1655848
[4] S. Cheng, J. Li, T. Zhang: Explicit construction of measure solutions of the Cauchy problem for the transportation equations. Science in China, Series A 40 (1997), 1287–1299. MR 1613902
[5] C. M. Dafermos: Generalized characteristics in hyperbolic systems of conservation laws. Arch. Rat. Mech. Anal. 107 (1989), 127–155. DOI 10.1007/BF00286497 | MR 0996908 | Zbl 0714.35046
[6] W. E, Yu. G. Rykov, Ya. G. Sinai: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys. 177 (1996), 349–380. DOI 10.1007/BF02101897 | MR 1384139
[7] F. Huang, Z. Wang: Well posedness for pressureless flow. Preprint. Institute of Applied Mathematics, the Chinese Academy of Sciences, 2001. MR 1853866
[8] L. Kofman, D. Pogosyan, S. Shandarin: Structure of the universe in the two-dimensional model of adhesion. Mon. Nat. R. Astr. Soc. 242 (1990), 200–208. DOI 10.1093/mnras/242.2.200
[9] J. Li: Note on the compressible Euler equations with zero temperature. Appl. Math. Lett. 14 (2001), 519–523. DOI 10.1016/S0893-9659(00)00187-7 | MR 1824197 | Zbl 0986.76079
[10] Y. Li, Y. Cao: Second order “large particle” difference method. Sciences in China 8 (1985). (Chinese)
[11] J. Li, G. Warnecke: Generalized characteristics and the uniqueness of entropy solutions to zero-pressure gas dynamics. Preprint 01-7, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg. Submitted for publication. MR 1989357
[12] J. Smoller: Shock Waves and Reaction-Diffusion Equations. Springer, New York, 1983. MR 0688146 | Zbl 0508.35002
[13] S. F. Shandarin, Ya. B. Zeldovich: The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium. Rev. Mod. Phys. 61 (1989), 185–220. DOI 10.1103/RevModPhys.61.185 | MR 0989562
Partner of
EuDML logo