Previous |  Up |  Next

Article

Title: Probabilistic analysis of singularities for the 3D Navier-Stokes equations (English)
Author: Flandoli, Franco
Author: Romito, Marco
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 211-218
Summary lang: English
.
Category: math
.
Summary: The classical result on singularities for the 3D Navier-Stokes equations says that the $1$-dimensional Hausdorff measure of the set of singular points is zero. For a stochastic version of the equation, new results are proved. For statistically stationary solutions, at any given time $t$, with probability one the set of singular points is empty. The same result is true for a.e. initial condition with respect to a measure related to the stationary solution, and if the noise is sufficiently non degenerate the support of such measure is the full energy space. (English)
Keyword: singularities
Keyword: Navier-Stokes equations
Keyword: Brownian motion
Keyword: stationary solutions
MSC: 35Q30
MSC: 60H15
MSC: 76D05
MSC: 76D06
MSC: 76M35
idZBL: Zbl 1137.76353
idMR: MR1981526
DOI: 10.21136/MB.2002.134166
.
Date available: 2012-10-05T12:55:55Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134166
.
Reference: [1] J. Bricmont, A. Kupiainen, R. Lefevere: Ergodicity of the 2D Navier-Stokes equation with random forcing.Preprint. MR 1868991
Reference: [2] A. Bensoussan, R. Temam: Equations stochastiques du type Navier-Stokes.J. Funct. Analysis 13 (1973), 195–222. MR 0348841, 10.1016/0022-1236(73)90045-1
Reference: [3] L. Caffarelli, R. Kohn, L. Nirenberg: Partial regularity of suitable weak solutions of the Navier-Stokes equations.Comm. Pure Appl. Math. 35 (1982), 771–831. MR 0673830, 10.1002/cpa.3160350604
Reference: [4] A. Chorin: Vorticity and Turbulence.Springer, New York, 1994. Zbl 0795.76002, MR 1281384
Reference: [5] G. Da Prato, J. Zabczyk: Stochastic Equations in Infinite Dimensions.Cambridge Univ. Press, Cambridge, 1992. MR 1207136
Reference: [6] B. Ferrario: Ergodic results for stochastic Navier-Stokes equations.Stochastics and Stoch. Reports 60 (1997), 271–288. MR 1467721, 10.1080/17442509708834110
Reference: [7] F. Flandoli: On a probabilistic description of small scale structures in 3D fluids.Annales Inst. Henri Poincaré, Probab. & Stat 38 (2002), 207–228. Zbl 1017.76074, MR 1899111, 10.1016/S0246-0203(01)01092-5
Reference: [8] F. Flandoli: Irreducibility of the 3-D stochastic Navier-Stokes equation.J. Funct. Anal. 149 (1997), 160–177. Zbl 0887.35171, MR 1471103, 10.1006/jfan.1996.3089
Reference: [9] F. Flandoli, D. Gatarek: Martingale and stationary solutions for stochastic Navier-Stokes equations.Probab. Theory Rel. Fields 102 (1995), 367–391. MR 1339739, 10.1007/BF01192467
Reference: [10] F. Flandoli, B. Maslowski: Ergodicity of the 2-D Navier-Stokes equation under random perturbations.Comm. Math. Phys. 171 (1995), 119–141. MR 1346374
Reference: [11] F. Flandoli, M. Romito: Statistically stationary solutions to the 3-D Navier-Stokes equation do not show singularities.Electron. J. Probab (to appear). MR 1825712
Reference: [12] F. Flandoli, M. Romito: Partial regularity for stochastic Navier-Stokes equations.Trans. Amer. Math. Soc (to appear). MR 1885650
Reference: [13] U. Frisch: Turbulence.Cambridge Univ. Press, Cambridge, 1998. Zbl 0972.76501
Reference: [14] S. Kuksin, A. Shirikyan: Stochastic dissipative PDEs and Gibbs measures.Comm. Math. Phys. 213 (2000), 291–330. MR 1785459, 10.1007/s002200000237
Reference: [15] Y. Le Jan, A.-S. Sznitman: Stochastic cascades and 3-dimensional Navier-Stokes equations.Probab. Theory Rel. Fields 109 (1997), 343–366. MR 1481125, 10.1007/s004400050135
Reference: [16] P. L. Lions, A. Majda: Equilibrium statistical theory for nearly parallel vortex filaments.Comm. Pure Appl. Math. 53 (2000). MR 1715529
Reference: [17] M. Romito: Existence of martingale and stationary suitable weak solutions for a stochastic Navier-Stokes system.Preprint, Quad. Dip. U. Dini, Firenze, 2000.
Reference: [18] M. Romito: Some examples of singular fluid flows.Preprint, 2001. MR 2206484
Reference: [19] R. Temam: The Navier-Stokes Equations.North Holland, 1977. Zbl 0335.35077, MR 0609732
Reference: [20] M. Viot: Solution faibles d’equations aux derivées partielles stochastiques non linéaires, these de Doctorat.Paris VI, 1976.
Reference: [21] M. I. Vishik, A. V. Fursikov: Mathematical Problems of Statistical Hydromechanics.Kluwer, Dordrecht, 1980. MR 0591678
Reference: [22] E. Weinan, J. C. Mattingly, Ya G. Sinai: Gibbsian dynamics and ergodicity for the stochastic forced Navier-Stokes equation.Comm. Math. Phys (to appear). MR 1868992
.

Files

Files Size Format View
MathBohem_127-2002-2_9.pdf 333.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo