Previous |  Up |  Next

Article

Title: On singularly perturbed ordinary differential equations with measure-valued limits (English)
Author: Artstein, Zvi
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 139-152
Summary lang: English
.
Category: math
.
Summary: The limit behaviour of solutions of a singularly perturbed system is examined in the case where the fast flow need not converge to a stationary point. The topological convergence as well as information about the distribution of the values of the solutions can be determined in the case that the support of the limit invariant measure of the fast flow is an asymptotically stable attractor. (English)
Keyword: singular perturbations
Keyword: invariant measures
Keyword: slow and fast motions
MSC: 34D15
MSC: 34D45
MSC: 34E10
MSC: 34E15
idZBL: Zbl 1016.34057
idMR: MR1981520
DOI: 10.21136/MB.2002.134168
.
Date available: 2012-10-05T12:49:44Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134168
.
Reference: [1] Z. Artstein: Stability in the presence of singular perturbations.Nonlinear Analysis 34 (1998), 817–827. Zbl 0948.34029, MR 1636588, 10.1016/S0362-546X(97)00574-9
Reference: [2] Z. Artstein: Singularly perturbed ordinary differential equations with nonautonomous fast dynamics.J. Dynamics Differential Equations 11 (1999), 297–318. Zbl 0937.34044, MR 1695247, 10.1023/A:1021981430215
Reference: [3] Z. Artstein, M. Slemrod: The singular perturbation limit of an elastic structure in a rapidly flowing invicid fluid.Q. Appl. Math. 59 (2000), 543–555. MR 1848534
Reference: [4] Z. Artstein, M. Slemrod: On singularly perturbed retarded functional differential equations.J. Differential Equations 171 (2001), 88–109. MR 1816795, 10.1006/jdeq.2000.3840
Reference: [5] Z. Artstein, A. Vigodner: Singularly perturbed ordinary differential equations with dynamic limits.Proceedings of the Royal Society of Edinburgh 126A (1996), 541–569. MR 1396278
Reference: [6] P. Billingsley: Convergence of Probability Measures.Wiley, New York, 1968. Zbl 0172.21201, MR 0233396
Reference: [7] W. E. Boyce, R. C. Diprima: Elementary Differential Equations and Boundary Value Problems (2nd Edition).Wiley, New York, 1969. MR 0179403
Reference: [8] N. Kriloff, N. Bogoliuboff: La théorie générale de la mesure dans son application à l’etude des systèmes dynamiques de la mécanique non linéaire.Ann. Math. 38 (1937), 65–113. 10.2307/1968511
Reference: [9] R. E. O’Malley, Jr.: Singular Perturbation Methods for Ordinary Differential Equations.Springer, New York, 1991. MR 1123483
Reference: [10] A. N. Tikhonov: Systems of differential equations containing small parameters in the derivative.Mat. Sbornik N. S. 31 (1952), 575–586. MR 0055515
Reference: [11] A. N. Tikhonov, A. B. Vasileva, A. G. Sveshnikov: Differential Equations.Springer, Berlin, 1985. MR 0788499, 10.1007/978-3-642-82175-2_3
Reference: [12] T. Ura: On the flow outside a closed invariant set; stability, relative stability and saddle sets.Contrib. Differential Equations 3 (1964), 249–294. Zbl 0161.28803, MR 0163018
Reference: [13] W. Wasow: Asymptotic Expansions for Ordinary Differential Equations.Wiley Interscience, New York, 1965. Zbl 0133.35301, MR 0203188
Reference: [14] T. Yoshizawa: Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions.Springer, New York, 1975. Zbl 0304.34051, MR 0466797
.

Files

Files Size Format View
MathBohem_127-2002-2_3.pdf 359.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo