Previous |  Up |  Next

Article

Title: A stable and optimal complexity solution method for mixed finite element discretizations (English)
Author: Brandts, Jan
Author: Stevenson, Rob
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 153-161
Summary lang: English
.
Category: math
.
Summary: We outline a solution method for mixed finite element discretizations based on dissecting the problem into three separate steps. The first handles the inhomogeneous constraint, the second solves the flux variable from the homogeneous problem, whereas the third step, adjoint to the first, finally gives the Lagrangian multiplier. We concentrate on aspects involved in the first and third step mainly, and advertise a multi-level method that allows for a stable computation of the intermediate and final quantities in optimal computational complexity. (English)
Keyword: mixed finite elements
Keyword: multi-level solver
MSC: 65F05
MSC: 65N30
MSC: 65N55
idZBL: Zbl 1074.65527
idMR: MR1981521
DOI: 10.21136/MB.2002.134167
.
Date available: 2012-10-05T12:50:31Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134167
.
Reference: [1] I. Babuška: The finite element method with Lagrangian multipliers.Numer. Math. 20 (1973), 179–192. MR 0359352, 10.1007/BF01436561
Reference: [2] S. Brenner: A multigrid algorithm for the lowest order Raviart-Thomas mixed triangular finite element method.SIAM J. Numer. Anal. 29 (1992), 647–678. Zbl 0759.65080, MR 1163350, 10.1137/0729042
Reference: [3] J. H. Brandts: The Cauchy-Riemann equations: discretization by finite elements, fast solution of the second variable, and a posteriori error estimation.Advances Comput. Math. 15 (2001), 61–77. Zbl 0996.65120, MR 1887729, 10.1023/A:1014217225870
Reference: [4] Z. Cai, C. I. Goldstein, J. Pasciak: Multilevel iteration for mixed finite element systems with penalty.SIAM J. Sci. Comput. 14 (1993), 1072–1088. MR 1232176, 10.1137/0914065
Reference: [5] F. Brezzi: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers.RAIRO Anal. Numér. 8 (1974), 129–151. Zbl 0338.90047, MR 0365287
Reference: [6] R. Ewing, J. Wang: Analysis of multilevel decomposition iterative methods for mixed finite element methods.RAIRO Modèl. Math. Anal. Numér. 28 (1994), 377–398. MR 1288504, 10.1051/m2an/1994280403771
Reference: [7] V. Girault, P. A. Raviart: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Series in Computational Mathematics, Springer, Berlin, 1986. MR 0851383
Reference: [8] R. Hiptmair, R. H. W. Hoppe: Multigrid methods for mixed finite elements in three dimensions.Numer. Math. 82 (1999), 253–279. MR 1685461, 10.1007/s002110050419
Reference: [9] R. Hiptmair, T. Schiekofer, B. Wohlmuth: Multilevel preconditioned augmented Lagrangian techniques for 2nd order mixed problems.Computing 57 (1996), 25–48. MR 1398269, 10.1007/BF02238356
Reference: [10] P. A. Raviart, J. M. Thomas: A mixed finite element method for 2nd order elliptic problems.Math. Aspects Finite Elem. Math., Proc. Conf. Rome 1975. Lect. Notes Math. 606 (1977), 292–315. MR 0483555
Reference: [11] R. P. Stevenson: A stable, direct solver for the gradient equation.Math. Comp (to appear). Zbl 1012.65126, MR 1933813
Reference: [12] A. J. Wathen, B. Fischer, D. J. Silvester: The convergence rate of the minimal residual method for the Stokes problem.Numer. Math. 71 (1995), 121–134. MR 1339734, 10.1007/s002110050138
.

Files

Files Size Format View
MathBohem_127-2002-2_4.pdf 338.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo