Previous |  Up |  Next

Article

Title: On measure solutions to the Zero-pressure gas model and their uniqueness (English)
Author: Li, Jiequan
Author: Warnecke, Gerald
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 265-273
Summary lang: English
.
Category: math
.
Summary: The system of zero-pressure gas dynamics conservation laws describes the dynamics of free particles sticking under collision while mass and momentum are conserved. The existence of such solutions was established some time ago. Here we report a uniqueness result that uses the Oleinik entropy condition and a cohesion condition. Both of these conditions are automatically satisfied by solutions obtained in previous existence results. Important tools in the proof of uniqueness are regularizations, generalized characteristics and flow maps. The solutions may contain vacuum states as well as singular measures. (English)
Keyword: zero-pressure gas dynamics
Keyword: measure solutions uniqueness
Keyword: entropy condition
Keyword: cohesion condition
Keyword: generalized characteristics
MSC: 35L65
MSC: 35L80
MSC: 70F16
MSC: 76N10
MSC: 76N15
idZBL: Zbl 1010.35070
idMR: MR1981531
DOI: 10.21136/MB.2002.134173
.
Date available: 2012-10-05T13:00:36Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134173
.
Reference: [1] R. K. Agarwal, D. W. Halt: A modified CUSP scheme in wave/particle split form for unstructed grid Euler flow.Frontiers of Computational Fluid Dynamics 1994, D. A. Caughey, M. M. Hafez (eds.), Wiley, Chichester, 1995, pp. 155–163.
Reference: [2] F. Bouchut: On zero pressure gas dynamics.Advances in kinetic theory and computing, Series on Advances in Mathematics for Applied Sciences 22, World Scientific, Singapore, 1994, 171–190. Zbl 0863.76068, MR 1323183
Reference: [3] Y. Brenier, E. Grenier: Sticky particles and scalar conservation laws.SIAM J. Numer. Anal. 35 (1998), 2317–2328. MR 1655848, 10.1137/S0036142997317353
Reference: [4] S. Cheng, J. Li, T. Zhang: Explicit construction of measure solutions of the Cauchy problem for the transportation equations.Science in China, Series A 40 (1997), 1287–1299. MR 1613902
Reference: [5] C. M. Dafermos: Generalized characteristics in hyperbolic systems of conservation laws.Arch. Rat. Mech. Anal. 107 (1989), 127–155. Zbl 0714.35046, MR 0996908, 10.1007/BF00286497
Reference: [6] W. E, Yu. G. Rykov, Ya. G. Sinai: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics.Comm. Math. Phys. 177 (1996), 349–380. MR 1384139, 10.1007/BF02101897
Reference: [7] F. Huang, Z. Wang: Well posedness for pressureless flow.Preprint. Institute of Applied Mathematics, the Chinese Academy of Sciences, 2001. MR 1853866
Reference: [8] L. Kofman, D. Pogosyan, S. Shandarin: Structure of the universe in the two-dimensional model of adhesion.Mon. Nat. R. Astr. Soc. 242 (1990), 200–208. 10.1093/mnras/242.2.200
Reference: [9] J. Li: Note on the compressible Euler equations with zero temperature.Appl. Math. Lett. 14 (2001), 519–523. Zbl 0986.76079, MR 1824197, 10.1016/S0893-9659(00)00187-7
Reference: [10] Y. Li, Y. Cao: Second order “large particle” difference method.Sciences in China 8 (1985). (Chinese)
Reference: [11] J. Li, G. Warnecke: Generalized characteristics and the uniqueness of entropy solutions to zero-pressure gas dynamics.Preprint 01-7, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg. Submitted for publication. MR 1989357
Reference: [12] J. Smoller: Shock Waves and Reaction-Diffusion Equations.Springer, New York, 1983. Zbl 0508.35002, MR 0688146
Reference: [13] S. F. Shandarin, Ya. B. Zeldovich: The large-scale structure of the universe: Turbulence, intermittency, structures in a self-gravitating medium.Rev. Mod. Phys. 61 (1989), 185–220. MR 0989562, 10.1103/RevModPhys.61.185
.

Files

Files Size Format View
MathBohem_127-2002-2_14.pdf 332.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo