| Title:
|
Hamiltonian colorings of graphs with long cycles (English) |
| Author:
|
Nebeský, Ladislav |
| Language:
|
English |
| Journal:
|
Mathematica Bohemica |
| ISSN:
|
0862-7959 (print) |
| ISSN:
|
2464-7136 (online) |
| Volume:
|
128 |
| Issue:
|
3 |
| Year:
|
2003 |
| Pages:
|
263-275 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
By a hamiltonian coloring of a connected graph $G$ of order $n \ge 1$ we mean a mapping $c$ of $V(G)$ into the set of all positive integers such that $\vert c(x) - c(y)\vert \ge n - 1 - D_G(x, y)$ (where $D_G(x, y)$ denotes the length of a longest $x-y$ path in $G$) for all distinct $x, y \in G$. In this paper we study hamiltonian colorings of non-hamiltonian connected graphs with long cycles, mainly of connected graphs of order $n \ge 5$ with circumference $n - 2$. (English) |
| Keyword:
|
connected graphs |
| Keyword:
|
hamiltonian colorings |
| Keyword:
|
circumference |
| MSC:
|
05C15 |
| MSC:
|
05C38 |
| MSC:
|
05C45 |
| MSC:
|
05C78 |
| idZBL:
|
Zbl 1050.05055 |
| idMR:
|
MR2012604 |
| DOI:
|
10.21136/MB.2003.134180 |
| . |
| Date available:
|
2009-09-24T22:09:37Z |
| Last updated:
|
2020-07-29 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134180 |
| . |
| Reference:
|
[1] G. Chartrand, L. Lesniak: Graphs & Digraphs. Third edition.Chapman and Hall, London, 1996. MR 1408678 |
| Reference:
|
[2] G. Chartrand, L. Nebeský, P. Zhang: Hamiltonian colorings of graphs.Preprint (2001). MR 2115148 |
| Reference:
|
[3] G. Chartrand, L. Nebeský, P. Zhang: On hamiltonian colorings of graphs.Preprint (2001). MR 2115148 |
| . |