Title:
|
Generalized deductive systems in subregular varieties (English) |
Author:
|
Chajda, Ivan |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
128 |
Issue:
|
3 |
Year:
|
2003 |
Pages:
|
319-324 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An algebra ${\mathcal A}= (A,F)$ is subregular alias regular with respect to a unary term function $g$ if for each $\Theta , \Phi \in \text{Con}\,{\mathcal A}$ we have $\Theta = \Phi $ whenever $[g(a)]_{\Theta } = [g(a)]_{\Phi }$ for each $a\in A$. We borrow the concept of a deductive system from logic to modify it for subregular algebras. Using it we show that a subset $C\subseteq A$ is a class of some congruence on $\Theta $ containing $g(a)$ if and only if $C$ is this generalized deductive system. This method is efficient (needs a finite number of steps). (English) |
Keyword:
|
regular variety |
Keyword:
|
subregular variety |
Keyword:
|
deductive system |
Keyword:
|
congruence class |
Keyword:
|
difference system |
MSC:
|
03B22 |
MSC:
|
08A30 |
MSC:
|
08B05 |
idZBL:
|
Zbl 1051.08002 |
idMR:
|
MR2012608 |
DOI:
|
10.21136/MB.2003.134184 |
. |
Date available:
|
2009-09-24T22:10:12Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134184 |
. |
Reference:
|
[1] Barbour G. D., Raftery J. G.: On the degrees of permutability of subregular varieties.Czechoslovak Math. J. 47 (1997), 317–325. MR 1452422, 10.1023/A:1022873713616 |
Reference:
|
[2] Bělohlávek R., Chajda I.: Congruence classes in regular varieties.Acta Math. Univ. Comenian. (Bratislava) 68 (1999), 71–75. MR 1711075 |
Reference:
|
[3] Bělohlávek R., Chajda I.: Relative deductive systems and congruence classes.Mult.- Valued Log. 5 (2000), 259–266. MR 1784274 |
Reference:
|
[4] Blok W., Köhler P., Pigozzi D.: On the structure of varieties with equationally definable principal congruences II.Algebra Univers. 18 (1984), 334–379. MR 0745497 |
Reference:
|
[5] Chajda I.: Congruence kernels in weakly regular varieties.Southeast Asian Bull. Math. 24 (2000), 15–18. Zbl 0988.08002, MR 1811209, 10.1007/s10012-000-0015-8 |
Reference:
|
[6] Chajda I., Rachůnek J.: Relational characterization of permutable and $n$-permutable varieties.Czechoslovak Math. J. 33 (1983), 505–508. MR 0721079 |
Reference:
|
[7] Gumm H.-P., Ursini A.: Ideals in universal algebras.Algebra Univers. 19 (1984), 45–54. MR 0748908, 10.1007/BF01191491 |
Reference:
|
[8] Ursini A.: Sulla varietá di algebre con una buona teoria degli ideali.Boll. Unione Mat. Ital. 6 (1972), 90–95. MR 0314728 |
. |