Previous |  Up |  Next

Article

Title: Generalized deductive systems in subregular varieties (English)
Author: Chajda, Ivan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 128
Issue: 3
Year: 2003
Pages: 319-324
Summary lang: English
.
Category: math
.
Summary: An algebra ${\mathcal A}= (A,F)$ is subregular alias regular with respect to a unary term function $g$ if for each $\Theta , \Phi \in \text{Con}\,{\mathcal A}$ we have $\Theta = \Phi $ whenever $[g(a)]_{\Theta } = [g(a)]_{\Phi }$ for each $a\in A$. We borrow the concept of a deductive system from logic to modify it for subregular algebras. Using it we show that a subset $C\subseteq A$ is a class of some congruence on $\Theta $ containing $g(a)$ if and only if $C$ is this generalized deductive system. This method is efficient (needs a finite number of steps). (English)
Keyword: regular variety
Keyword: subregular variety
Keyword: deductive system
Keyword: congruence class
Keyword: difference system
MSC: 03B22
MSC: 08A30
MSC: 08B05
idZBL: Zbl 1051.08002
idMR: MR2012608
DOI: 10.21136/MB.2003.134184
.
Date available: 2009-09-24T22:10:12Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134184
.
Reference: [1] Barbour G. D., Raftery J. G.: On the degrees of permutability of subregular varieties.Czechoslovak Math. J. 47 (1997), 317–325. MR 1452422, 10.1023/A:1022873713616
Reference: [2] Bělohlávek R., Chajda I.: Congruence classes in regular varieties.Acta Math. Univ. Comenian. (Bratislava) 68 (1999), 71–75. MR 1711075
Reference: [3] Bělohlávek R., Chajda I.: Relative deductive systems and congruence classes.Mult.- Valued Log. 5 (2000), 259–266. MR 1784274
Reference: [4] Blok W., Köhler P., Pigozzi D.: On the structure of varieties with equationally definable principal congruences II.Algebra Univers. 18 (1984), 334–379. MR 0745497
Reference: [5] Chajda I.: Congruence kernels in weakly regular varieties.Southeast Asian Bull. Math. 24 (2000), 15–18. Zbl 0988.08002, MR 1811209, 10.1007/s10012-000-0015-8
Reference: [6] Chajda I., Rachůnek J.: Relational characterization of permutable and $n$-permutable varieties.Czechoslovak Math. J. 33 (1983), 505–508. MR 0721079
Reference: [7] Gumm H.-P., Ursini A.: Ideals in universal algebras.Algebra Univers. 19 (1984), 45–54. MR 0748908, 10.1007/BF01191491
Reference: [8] Ursini A.: Sulla varietá di algebre con una buona teoria degli ideali.Boll. Unione Mat. Ital. 6 (1972), 90–95. MR 0314728
.

Files

Files Size Format View
MathBohem_128-2003-3_8.pdf 304.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo