Previous |  Up |  Next

Article

Title: Existence of nonoscillatory solutions of a class of nonlinear difference equations with a forced term (English)
Author: Zhang, B. G.
Author: Sun, Y. J.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 3
Year: 2001
Pages: 639-647
Summary lang: English
.
Category: math
.
Summary: In this paper, necessary and sufficient conditions for the existence of nonoscillatory solutions of the forced nonlinear difference equation \[ \Delta (x_{n}-p_{n} x_{\tau (n)})+f(n,x_{\sigma (n)})=q_{n} \] are obtained. Examples are included to illustrate the results. (English)
Keyword: difference equations
Keyword: nonlinear
Keyword: forced term
Keyword: nonoscillation
MSC: 39A10
MSC: 39A11
idZBL: Zbl 0982.39003
idMR: MR1970266
DOI: 10.21136/MB.2001.134192
.
Date available: 2009-09-24T21:55:19Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134192
.
Reference: [1] R. P. Agarwal: Difference Equations and Inequalities.Marcel Dekker, New York, 2000. Zbl 0952.39001, MR 1740241
Reference: [2] R. P. Agarwal, P. J. Y. Wong: Advanced Topics in Difference Equations.Kluwer, Dordrecht, 1997. MR 1447437
Reference: [3] M. P. Chen, B. G. Zhang: The existence of the bounded positive solutions of delay difference equations.PanAmerican Math. J. 3 (1993), 79–94. MR 1201542
Reference: [4] J. R. Graef, A. Miciano, P. W. Spikes, P. Sundaram, E. Thandapani: On the asymptotic behavior of solutions of a nonlinear difference equation.Proceedings of the First International Conference on Difference Equations, Gordan and Breach, New York, 1995, pp. 223–229. MR 1678694
Reference: [5] J. R. Graef, A. Miciano, P. W. Spikes, P. Sundaram, E. Thandapani: Oscillatory and asymptotic behavior of solutions of nonlinear neutral-type difference equations.J. Austral. Math. Soc. Ser. B 38 (1996), 163–171. MR 1414357, 10.1017/S0334270000000552
Reference: [6] J. R. Graef, P. W. Spikes: Boundedness and asymptotic behavior of solutions of a forced difference equations.Internat. J. Math. and Math. Sci. 17 (1994), 397–400. MR 1261087, 10.1155/S0161171294000542
Reference: [7] J. R. Graef, J. Jaros, A. Miciano, P. W. Spikes: Oscillation and nonoscillation results for nonlinear difference equations with a forcing term.Proceedings of the first International Conference on Difference Equations, Gordan and Breach, New York, 1995, pp. 213–222. MR 1678690
Reference: [8] B. G. Zhang, H. Wang: The existence of nonoscillatory and oscillatory solutions of neutral difference equations.Dynam. Systems Appl. 6 (1997), 411–428. MR 1470829
Reference: [9] B. S. Lalli, B. G. Zhang: On existence of positive solutions and bounded oscillations for neutral difference equations.J. Math. Anal. Appl. 166 (1992), 272–287. MR 1159653, 10.1016/0022-247X(92)90342-B
Reference: [10] B. S. Lalli, B. G. Zhang, J. Z. Li: On the oscillation of solutions and existence of positive solutions of neutral difference equations.J. Math. Anal. Appl. 158 (1991), 213–233. MR 1113411, 10.1016/0022-247X(91)90278-8
Reference: [11] E. Thandapani, J. R. Graef, P. W. Spikes: On existence of positive solutions and oscillations of neutral difference equations of odd order.J. Differ. Equations Appl. 2 (1996), 175–183. MR 1384567, 10.1080/10236199608808052
Reference: [12] Wudu Lu: Existence of nonoscillatory solutions of first order nonlinear neutral equations.J. Austral. Math. Soc. Ser. B 32 (1990), 180–192. Zbl 0723.34069, 10.1017/S0334270000008419
Reference: [13] B. G. Zhang, H. Wang: The existence of nonoscillatory and oscillatory solutions of neutral difference equations.Dynam. Systems Appl. 6 (1997), 411–428. MR 1470829
.

Files

Files Size Format View
MathBohem_126-2001-3_11.pdf 316.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo