Previous |  Up |  Next

Article

Title: Pure subgroups (English)
Author: Bican, Ladislav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 3
Year: 2001
Pages: 649-652
Summary lang: English
.
Category: math
.
Summary: Let $\lambda $ be an infinite cardinal. Set $\lambda _0=\lambda $, define $\lambda _{i+1}=2^{\lambda _i}$ for every $i=0,1,\dots $, take $\mu $ as the first cardinal with $\lambda _i<\mu $, $i=0,1,\dots $ and put $\kappa = (\mu ^{\aleph _0})^+$. If $F$ is a torsion-free group of cardinality at least $\kappa $ and $K$ is its subgroup such that $F/K$ is torsion and $|F/K|\le \lambda $, then $K$ contains a non-zero subgroup pure in $F$. This generalizes the result from a previous paper dealing with $F/K$ $p$-primary. (English)
Keyword: torsion-free abelian groups
Keyword: pure subgroup
Keyword: $P$-pure subgroup
MSC: 20K20
MSC: 20K27
idZBL: Zbl 0983.20054
idMR: MR1970267
DOI: 10.21136/MB.2001.134196
.
Date available: 2009-09-24T21:55:27Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134196
.
Reference: [1] H. Bass: Finitistic dimension and a homological characterization of semi-primary rings.Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 0157984, 10.1090/S0002-9947-1960-0157984-8
Reference: [2] L. Bican: A note on pure subgroups.(to appear). Zbl 0969.20028, MR 1777650
Reference: [3] L. Bican, B. Torrecillas: On covers.(to appear). MR 1813494
Reference: [4] B. Eckmann, A. Schopf: Über injektive Moduln.Arch. Math. 4 (1953), 75–78. MR 0055978, 10.1007/BF01899665
Reference: [5] E. Enochs: Injective and flat covers, envelopes and resolvents.Israel J. Math. 39 (1981), 189–209. Zbl 0464.16019, MR 0636889, 10.1007/BF02760849
Reference: [6] L. Fuchs: Infinite Abelian Groups, vol. I and II.Academic Press, New York, 1973 and 1977. MR 0255673
Reference: [7] M. L. Teply: Torsion-free covers II.Israel J. Math. 23 (1976), 132–136. Zbl 0321.16014, MR 0417245
Reference: [8] J. Xu: Flat Covers of Modules.Lecture Notes in Mathematics 1634, Springer, Berlin, 1996. Zbl 0860.16002, MR 1438789
.

Files

Files Size Format View
MathBohem_126-2001-3_12.pdf 278.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo