Previous |  Up |  Next

Article

Title: A Nevanlinna theorem for superharmonic functions on Dirichlet regular Greenian sets (English)
Author: Watson, Neil A.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 1
Year: 2005
Pages: 1-18
Summary lang: English
.
Category: math
.
Summary: A generalization of Nevanlinna’s First Fundamental Theorem to superharmonic functions on Green balls is proved. This enables us to generalize many other theorems, on the behaviour of mean values of superharmonic functions over Green spheres, on the Hausdorff measures of certain sets, on the Riesz measures of superharmonic functions, and on differences of positive superharmonic functions. (English)
Keyword: Nevanlinna theorem
Keyword: superharmonic function
Keyword: $\delta $-subharmonic function
Keyword: Riesz measure
Keyword: mean value
MSC: 30D35
MSC: 31B05
MSC: 31B10
idZBL: Zbl 1136.31305
idMR: MR2128355
DOI: 10.21136/MB.2005.134218
.
Date available: 2009-09-24T22:17:28Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134218
.
Reference: [1] D. H. Armitage: A Nevanlinna theorem for superharmonic functions in half-spaces, with applications.J. London Math. Soc. 23 (1981), 137–157. Zbl 0427.31003, MR 0602246
Reference: [3] D. H. Armitage: Mean values and associated measures of superharmonic functions.Hiroshima Math. J. 13 (1983), 53–63. Zbl 0512.31009, MR 0693550, 10.32917/hmj/1206133537
Reference: [3] J. L. Doob: Classical Potential Theory and its Probabilistic Counterpart.Springer, New York, 1984. Zbl 0549.31001, MR 0731258
Reference: [4] K. J. Falconer: The Geometry of Fractal Sets.Cambridge University Press, Cambridge, 1985. Zbl 0587.28004, MR 0867284
Reference: [5] W. K. Hayman: Subharmonic Functions, Vol. 2.Academic Press, London, 1989. MR 1049148
Reference: [6] W. K. Hayman, P. B. Kennedy: Subharmonic Functions, Vol. 1.Academic Press, London, 1976.
Reference: [7] Ü. Kuran: On measures associated to superharmonic functions.Proc. Amer. Math. Soc. 36 (1972), 179–186. Zbl 0255.31004, MR 0316728, 10.1090/S0002-9939-1972-0316728-0
Reference: [8] M. J. Parker: The fundamental function of the distance.Bull. London Math. Soc. 19 (1987), 337–342. Zbl 0644.31005, MR 0887772, 10.1112/blms/19.4.337
Reference: [9] C. A. Rogers: Hausdorff Measures.Cambridge University Press, Cambridge, 1970. Zbl 0204.37601, MR 0281862
Reference: [10] C. A. Rogers, S. J. Taylor: Functions continuous and singular with respect to a Hausdorff measure.Mathematika 8 (1961), 1–31. MR 0130336, 10.1112/S0025579300002084
Reference: [11] N. A. Watson: Mean values of subharmonic functions over Green spheres.Math. Scand. 69 (1991), 307–319. Zbl 0769.31001, MR 1156430, 10.7146/math.scand.a-12382
Reference: [12] N. A. Watson: Generalizations of the spherical mean convexity theorem on subharmonic functions.Ann. Acad. Sci. Fenn. Ser. A I Math. 17 (1992), 241–255. Zbl 0770.31005, MR 1190322, 10.5186/aasfm.1992.1733
Reference: [13] N. A. Watson: Superharmonic extensions, mean values and Riesz measures.Potential Anal. 2 (1993), 269–294. Zbl 0785.31002, MR 1245245, 10.1007/BF01048511
Reference: [14] N. A. Watson: Mean values and associated measures of $\delta $-subharmonic functions.Math. Bohem. 127 (2002), 83–102. Zbl 0998.31002, MR 1895249
Reference: [15] N. A. Watson: A generalized Nevanlinna theorem for supertemperatures.Ann. Acad. Sci. Fenn. Math. 28 (2003), 35–54. Zbl 1035.31006, MR 1976828
.

Files

Files Size Format View
MathBohem_130-2005-1_1.pdf 354.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo