Title:
|
A scalar Volterra derivative for the PoU-integral (English) |
Author:
|
Marraffa, V. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
130 |
Issue:
|
1 |
Year:
|
2005 |
Pages:
|
49-62 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A weak form of the Henstock Lemma for the ${\mathrm PoU}$-integrable functions is given. This allows to prove the existence of a scalar Volterra derivative for the ${\mathrm PoU}$-integral. Also the ${\mathrm PoU}$-integrable functions are characterized by means of Pettis integrability and a condition involving finite pseudopartitions. (English) |
Keyword:
|
Pettis integral |
Keyword:
|
McShane integral |
Keyword:
|
${\mathrm PoU}$ integral |
Keyword:
|
Volterra derivative |
MSC:
|
28B05 |
MSC:
|
46G10 |
idZBL:
|
Zbl 1112.28009 |
idMR:
|
MR2128358 |
DOI:
|
10.21136/MB.2005.134220 |
. |
Date available:
|
2009-09-24T22:17:55Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134220 |
. |
Reference:
|
[1] J. Diestel, J. J. Uhl Jr.: Vector Measures.Mathematical Surveys, N.15, Amer. Math. Soc., 1977. MR 0453964 |
Reference:
|
[2] N. Dinculeanu: Vector Integration and Stochastic Integration in Banach Space.John Wiley & Sons, 1999. MR 1782432 |
Reference:
|
[3] L. Di Piazza, V. Marraffa: The McShane, ${\mathrm PU}$ and Henstock integrals of Banach valued functions.Czechoslovak Math. J. 52 (2002), 609–633. MR 1923266, 10.1023/A:1021736031567 |
Reference:
|
[4] L. Di Piazza, V. Marraffa: An equivalent definition of the vector-valued McShane integral by means of partitions of the unity.Studia Math. 151 (2002), 175–185. MR 1917952, 10.4064/sm151-2-5 |
Reference:
|
[5] N. Dunford, B. J. Pettis: Linear operations on summable functions.Trans. Amer. Math. Soc. 47 (1940), 323–392. MR 0002020, 10.1090/S0002-9947-1940-0002020-4 |
Reference:
|
[6] D. Fremlin: The generalized McShane integral.Illinois J. Math. 39 (1995), 39–67. Zbl 0810.28006, MR 1299648, 10.1215/ijm/1255986628 |
Reference:
|
[7] R. A. Gordon: The McShane integral of Banach-valued functions.Illinois J. Math. 34 (1990), 557–567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170 |
Reference:
|
[8] J. Jarník, J. Kurzweil: A non absolutely convergent integral which admits transformation and can be used for integration on manifolds.Czechoslovak Math. J. 35 (1985), 116–139. MR 0779340 |
Reference:
|
[9] J. Jarník, J. Kurzweil: A new and more powerful concept of the ${\mathrm PU}$-integral.Czechoslovak Math. J. 38 (1988), 8–48. MR 0925939 |
Reference:
|
[10] B. J. Pettis: Differentiation in Banach space.Duke Math. J. 5 (1939), 254–269. MR 1546122, 10.1215/S0012-7094-39-00523-5 |
Reference:
|
[11] W. F. Pfeffer: A Volterra type derivative of the Lebesgue integral.Proc. Amer. Math. Soc. 117 (1993), 411–416. Zbl 0789.28005, MR 1135079, 10.1090/S0002-9939-1993-1135079-1 |
Reference:
|
[12] R. S. Phillips: Integration in a convex linear topological space.Trans. Amer. Math. Soc. 47 (1940), 114–145. Zbl 0022.31902, MR 0002707, 10.1090/S0002-9947-1940-0002707-3 |
Reference:
|
[13] B. S. Thomson: Differentiation.Handbook of Measure Theory, vol. I, E. Pap (ed.), Elsevier, North-Holland, 2002. Zbl 1028.28001, MR 1954615 |
. |