Previous |  Up |  Next

Article

Title: A scalar Volterra derivative for the PoU-integral (English)
Author: Marraffa, V.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 1
Year: 2005
Pages: 49-62
Summary lang: English
.
Category: math
.
Summary: A weak form of the Henstock Lemma for the ${\mathrm PoU}$-integrable functions is given. This allows to prove the existence of a scalar Volterra derivative for the ${\mathrm PoU}$-integral. Also the ${\mathrm PoU}$-integrable functions are characterized by means of Pettis integrability and a condition involving finite pseudopartitions. (English)
Keyword: Pettis integral
Keyword: McShane integral
Keyword: ${\mathrm PoU}$ integral
Keyword: Volterra derivative
MSC: 28B05
MSC: 46G10
idZBL: Zbl 1112.28009
idMR: MR2128358
DOI: 10.21136/MB.2005.134220
.
Date available: 2009-09-24T22:17:55Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134220
.
Reference: [1] J. Diestel, J. J. Uhl Jr.: Vector Measures.Mathematical Surveys, N.15, Amer. Math. Soc., 1977. MR 0453964
Reference: [2] N. Dinculeanu: Vector Integration and Stochastic Integration in Banach Space.John Wiley & Sons, 1999. MR 1782432
Reference: [3] L. Di Piazza, V. Marraffa: The McShane, ${\mathrm PU}$ and Henstock integrals of Banach valued functions.Czechoslovak Math. J. 52 (2002), 609–633. MR 1923266, 10.1023/A:1021736031567
Reference: [4] L. Di Piazza, V. Marraffa: An equivalent definition of the vector-valued McShane integral by means of partitions of the unity.Studia Math. 151 (2002), 175–185. MR 1917952, 10.4064/sm151-2-5
Reference: [5] N. Dunford, B. J. Pettis: Linear operations on summable functions.Trans. Amer. Math. Soc. 47 (1940), 323–392. MR 0002020, 10.1090/S0002-9947-1940-0002020-4
Reference: [6] D. Fremlin: The generalized McShane integral.Illinois J. Math. 39 (1995), 39–67. Zbl 0810.28006, MR 1299648, 10.1215/ijm/1255986628
Reference: [7] R. A. Gordon: The McShane integral of Banach-valued functions.Illinois J. Math. 34 (1990), 557–567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170
Reference: [8] J. Jarník, J. Kurzweil: A non absolutely convergent integral which admits transformation and can be used for integration on manifolds.Czechoslovak Math. J. 35 (1985), 116–139. MR 0779340
Reference: [9] J. Jarník, J. Kurzweil: A new and more powerful concept of the ${\mathrm PU}$-integral.Czechoslovak Math. J. 38 (1988), 8–48. MR 0925939
Reference: [10] B. J. Pettis: Differentiation in Banach space.Duke Math. J. 5 (1939), 254–269. MR 1546122, 10.1215/S0012-7094-39-00523-5
Reference: [11] W. F. Pfeffer: A Volterra type derivative of the Lebesgue integral.Proc. Amer. Math. Soc. 117 (1993), 411–416. Zbl 0789.28005, MR 1135079, 10.1090/S0002-9939-1993-1135079-1
Reference: [12] R. S. Phillips: Integration in a convex linear topological space.Trans. Amer. Math. Soc. 47 (1940), 114–145. Zbl 0022.31902, MR 0002707, 10.1090/S0002-9947-1940-0002707-3
Reference: [13] B. S. Thomson: Differentiation.Handbook of Measure Theory, vol. I, E. Pap (ed.), Elsevier, North-Holland, 2002. Zbl 1028.28001, MR 1954615
.

Files

Files Size Format View
MathBohem_130-2005-1_4.pdf 366.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo