Previous |  Up |  Next

Article

Title: On belated differentiation and a characterization of Henstock-Kurzweil-Ito integrable processes (English)
Author: Toh, Tin-Lam
Author: Chew, Tuan-Seng
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 1
Year: 2005
Pages: 63-72
Summary lang: English
.
Category: math
.
Summary: The Henstock-Kurzweil approach, also known as the generalized Riemann approach, has been successful in giving an alternative definition to the classical Itô integral. The Riemann approach is well-known for its directness in defining integrals. In this note we will prove the Fundamental Theorem for the Henstock-Kurzweil-Itô integral, thereby providing a characterization of Henstock-Kurzweil-Itô integrable stochastic processes in terms of their primitive processes. (English)
Keyword: belated differentiation
Keyword: Henstock-Kurzweil-Itô integral
Keyword: integrable processes
MSC: 26A39
MSC: 60H05
idZBL: Zbl 1112.26012
idMR: MR2128359
DOI: 10.21136/MB.2005.134223
.
Date available: 2009-09-24T22:18:03Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134223
.
Reference: [1] Chew T. S., Tay, J. Y., Toh, T. L.: The non-uniform Riemann approach to Itô’s integral.Real Anal. Exch. 27 (2001/2002), 495–514. MR 1922665
Reference: [2] Henstock, R.: The efficiency of convergence factors for functions of a continuous real variable.J. London Math. Soc. 30 (1955), 273–286. Zbl 0066.09204, MR 0072968, 10.1112/jlms/s1-30.3.273
Reference: [3] Henstock, R.: Lectures on the Theory of Integration.World Scientific, Singapore, 1988. Zbl 0668.28001, MR 0963249
Reference: [4] Lee, P. Y.: Lanzhou Lectures on Henstock Integration.World Scientific, Singapore, 1989. Zbl 0699.26004, MR 1050957
Reference: [5] McShane, E. J.: Stochastic Calculus and Stochastic Models.Academic Press, New York, 1974. Zbl 0292.60090, MR 0443084
Reference: [6] Oksendal, B.: Stochastic Differential Equation: An Introduction with Applications. 4th edition.Springer, 1996.
Reference: [7] Pop-Stojanovic, Z. R.: On McShane’s belated stochastic integral.SIAM J. Appl. Math. 22 (1972), 89–92. Zbl 0243.60035, MR 0322954, 10.1137/0122010
Reference: [8] Toh, T. L., Chew, T. S.: A variational approach to Itô’s integral.Proceedings of SAP’s 98, Taiwan, World Scientific, Singapore, 1999, pp. 291–299. MR 1819215
Reference: [9] Toh, T. L., Chew, T. S.: The Riemann approach to stochastic integration using non-uniform meshes.J. Math. Anal. Appl. 280 (2003), 133–147. MR 1972197, 10.1016/S0022-247X(03)00059-3
Reference: [10] Xu, J. G., Lee, P. Y.: Stochastic integrals of Itô and Henstock.Real Anal. Exch. 18 (1992/3), 352–366. MR 1228401
.

Files

Files Size Format View
MathBohem_130-2005-1_5.pdf 320.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo