Previous |  Up |  Next

Article

Title: Characterizations of 0-distributive posets (English)
Author: Joshi, Vinayak V.
Author: Waphare, B. N.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 1
Year: 2005
Pages: 73-80
Summary lang: English
.
Category: math
.
Summary: The concept of a 0-distributive poset is introduced. It is shown that a section semicomplemented poset is distributive if and only if it is 0-distributive. It is also proved that every pseudocomplemented poset is 0-distributive. Further, 0-distributive posets are characterized in terms of their ideal lattices. (English)
Keyword: 0-distributive
Keyword: pseudocomplement
Keyword: sectionally semi-complemented poset
Keyword: ideal lattice
MSC: 06A06
MSC: 06A11
MSC: 06C15
MSC: 06C20
MSC: 06D15
idZBL: Zbl 1112.06001
idMR: MR2128360
DOI: 10.21136/MB.2005.134222
.
Date available: 2009-09-24T22:18:12Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134222
.
Reference: [1] G. Grätzer: General Lattice Theory.Birkhäuser, New York, 1998. MR 1670580
Reference: [2] P. A. Grillet, J. C. Varlet: Complementedness conditions in lattices.Bull. Soc. Roy. Sci. Liège 36 (1967), 628–642. MR 0228389
Reference: [3] R. Halaš: Pseudocomplemented ordered sets.Arch. Math. (Brno) 29 (1993), 153–160. MR 1263116
Reference: [4] R. Halaš: Annihilators and ideals in distributive and modular ordered sets.Acta Univ. Palacki. Olomuc. Fac. Rerum Natur. Math. 34 (1995), 31–37. MR 1447252
Reference: [5] C. S. Hoo, K. P. Shum: $0$-Distributive and $P$-uniform semilattices.Canad. Math. Bull. 25 (1982), 317–324. MR 0668948, 10.4153/CMB-1982-044-1
Reference: [6] C. Jayaram: Complemented semilattices.Math. Semin. Notes, Kobe Univ. 8 (1980), 259–267. Zbl 0453.06005, MR 0601893
Reference: [7] J. Larmerová, J. Rachůnek: Translations of distributive and modular ordered sets.Acta Univ. Palacki. Olomuc. Fac. Rerum Natur. Math. 27 (1988), 13–23. MR 1039879
Reference: [8] M. M. Pawar, B. N. Waphare: On Stone posets and strongly pseudocomplemented posets.J. Indian Math. Soc. (N.S.) 68 (2001), 91–95. MR 1929825
Reference: [9] Y. S. Pawar, V. B. Dhamke: 0-distributive posets.Indian J. Pure Appl. Math. 20 (1989), 804–811. MR 1012883
Reference: [10] Y. S. Pawar, N. K. Thakare: 0-distributive semilattices.Canad. Math. Bull. 21 (1978), 469–475. MR 0523589, 10.4153/CMB-1978-080-6
Reference: [11] J. C. Varlet: A generalization of the notion of pseudo-complementedness.Bull. Soc. Roy. Sci. Liège 37 (1968), 149–158. Zbl 0162.03501, MR 0228390
Reference: [12] J. C. Varlet: Distributive semilattices and Boolean lattices.Bull. Soc. Roy. Sci. Liège 41 (1972), 5–10. Zbl 0237.06011, MR 0307991
Reference: [13] P. V. Venkatanarasimhan: Pseudo-complements in posets.Proc. Amer. Math. Soc. 28 (1971), 9–17. Zbl 0218.06002, MR 0272687, 10.1090/S0002-9939-1971-0272687-X
.

Files

Files Size Format View
MathBohem_130-2005-1_6.pdf 312.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo