Previous |  Up |  Next

Article

Title: On the Lipschitz operator algebras (English)
Author: Ebadian, A.
Author: Shokri, A. A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 3
Year: 2009
Pages: 213-222
Summary lang: English
.
Category: math
.
Summary: In a recent paper by H. X. Cao, J. H. Zhang and Z. B. Xu an $\alpha $-Lipschitz operator from a compact metric space into a Banach space $A$ is defined and characterized in a natural way in the sence that $F:K\rightarrow A$ is a $\alpha $-Lipschitz operator if and only if for each $\sigma \in X^*$ the mapping $\sigma \circ F$ is a $\alpha $-Lipschitz function. The Lipschitz operators algebras $L^\alpha (K,A)$ and $l^\alpha (K,A)$ are developed here further, and we study their amenability and weak amenability of these algebras. Moreover, we prove an interesting result that $L^\alpha (K,A)$ and $l^\alpha (K,A)$ are isometrically isomorphic to $L^{\alpha }(K)\check{\otimes }A$ and $l^{\alpha }(K)\check{\otimes }A$ respectively. Also we study homomorphisms on the $L^\alpha _A(X,B)$. (English)
Keyword: Lipschitz algebras
Keyword: amenability
Keyword: homomorphism
MSC: 46H25
MSC: 46J10
MSC: 47B48
idZBL: Zbl 1211.47074
idMR: MR2591677
.
Date available: 2009-09-18T11:25:08Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/134233
.
Reference: [1] Alimohammadi, D., Ebadian, A.: Headberg’s theorem in real Lipschitz algebras.Indian J. Pure Appl. Math. 32 (2001), 1479–1493. MR 1878062
Reference: [2] Bade, W. G., Curtis, P. C., Dales, H. G.: Amenability and weak amenability for Berurling and Lipschitz algebras.Proc. London Math. Soc. 55 (3) (1987), 359–377. MR 0896225
Reference: [3] Cao, H. X., Xu, Z. B.: Some properties of Lipschitz-$\alpha $ operators.Acta Math. Sin. (Engl. Ser.) 45 (2) (2002), 279–286. MR 1928136
Reference: [4] Cao, H. X., Zhang, J. H., Xu, Z. B.: Characterizations and extentions of Lipschitz-$\alpha $ operators.Acta Math. Sin. (Engl. Ser.) 22 (3) (2006), 671–678. MR 2219676, 10.1007/s10114-005-0727-x
Reference: [5] Dales, H. G.: Banach Algebras and Automatic Continuty.Clarendon Press, Oxford, 2000. MR 1816726
Reference: [6] Ebadian, A.: Prime ideals in Lipschitz algebras of finite differentable function.Honam Math. J. 22 (2000), 21–30. MR 1779197
Reference: [7] Honary, T. G, Mahyar, H.: Approximation in Lipschitz algebras.Quaest. Math. 23 (2000), 13–19. Zbl 0963.46034, MR 1796246, 10.2989/16073600009485953
Reference: [8] Johnson, B. E.: Cohomology in Banach algebras.Mem. Amer. Math. Soc. 127 (1972). Zbl 0256.18014, MR 0374934
Reference: [9] Johnson, B. E.: Lipschitz spaces.Pacific J. Math. 51 (1975), 177–186. MR 0346503, 10.2140/pjm.1974.51.177
Reference: [10] Runde, V.: Lectures on Amenability.Springer, 2001. MR 1874893
Reference: [11] Sherbert, D. R.: Banach algebras of Lipschitz functions.Pacific J. Math. 3 (1963), 1387–1399. Zbl 0121.10203, MR 0156214, 10.2140/pjm.1963.13.1387
Reference: [12] Sherbert, D. R.: The structure of ideals and point derivations in Banach algebras of Lipschitz functions.Trans. Amer. Math. Soc. 111 (1964), 240–272. Zbl 0121.10204, MR 0161177, 10.1090/S0002-9947-1964-0161177-1
Reference: [13] Weaver, N.: Subalgebras of little Lipschitz algebras.Pacific J. Math. 173 (1996), 283–293. Zbl 0846.54013, MR 1387803
Reference: [14] Weaver, N.: Lipschitz Algebras.World Scientific Publishing Co., Inc., River Edge, NJ, 1999. Zbl 0936.46002, MR 1832645
.

Files

Files Size Format View
ArchMathRetro_045-2009-3_6.pdf 463.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo