Previous |  Up |  Next

Article

Title: One-step methods for two-point boundary value problems in ordinary differential equations with parameters (English)
Author: Jankowski, Tadeusz
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 39
Issue: 2
Year: 1994
Pages: 81-95
Summary lang: English
.
Category: math
.
Summary: A general theory of one-step methods for two-point boundary value problems with parameters is developed. On nonuniform nets $h_n$, one-step schemes are considered. Sufficient conditions for convergence and error estimates are given. Linear or quadratic convergence is obtained by Theorem 1 or 2, respectively. (English)
Keyword: one-step methods
Keyword: two-point boundary value problems
MSC: 34B15
MSC: 65L06
MSC: 65L10
idZBL: Zbl 0817.65067
idMR: MR1258185
DOI: 10.21136/AM.1994.134246
.
Date available: 2009-09-22T17:43:05Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134246
.
Reference: [1] E.A. Coddington and N. Levinson: Theory of ordinary differentical equations.McGraw-Hill, New York, 1955. MR 0069338
Reference: [2] J.W. Daniel and R.E. Moore: Computation and theory in ordinary differential equations.W.H. Freeman, San Francisco, 1970. MR 0267765
Reference: [3] P. Henrici: Discrete variable methods in ordinary differential equations.John Wiley, New York, 1962. Zbl 0112.34901, MR 0135729
Reference: [4] T. Jankowski: Boundary value problems with a parameter of differentical equations with deviated arguments.Math. Nachr. 125 (1986), 7-28. MR 0847349, 10.1002/mana.19861250103
Reference: [5] T. Jankowski: One-step methods for ordinary differential equations with parameters.Apl. Mat. 35 (1990), 67-83. Zbl 0701.65053, MR 1039412
Reference: [6] T. Jankowski: On the convergence of multistep methods for nonlinear two-point boundary value problems.APM (1991), 185–200. Zbl 0746.65060, MR 1109587
Reference: [7] H.B. Keller: Numerical methods for two point boundary value problems.Waltham, Blaisdell, 1968. Zbl 0172.19503, MR 0230476
Reference: [8] H.B. Keller: Numerical solution of two-point boundary value problems.Society for Industrial and Applied Mathematics, Philadelphia 24, 1976. MR 0433897
Reference: [9] A. Pasquali: Un procedimento di calcolo connesso ad un noto problema ai limiti per l’equazione $\dot{x}=f(t,x,\lambda )$.Mathematiche 23 (1968), 319-328. MR 0267785
Reference: [10] T. Pomentale: A constructive theorem of existence and uniqueness for the problem $y^{\prime }=f(x,y,\lambda ), y(a)=\alpha , y(b)=\beta $.ZAMM 56 (1976), 387-388. Zbl 0338.34019, MR 0430389, 10.1002/zamm.19760560806
Reference: [11] Z.B. Seidov: A multipoint boundary value problem with a parameter for systems of differential equations in Banach space.Sibirski Math. Z. 9 (1968), 223-228. (Russian) MR 0281987
Reference: [12] J. Stoer and R. Bulirsch: Introduction to numerical analysis.Springer-Verlag, New York, 1980. MR 0557543
.

Files

Files Size Format View
AplMat_39-1994-2_1.pdf 1.888Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo