Previous |  Up |  Next

Article

Title: Asymptotically normal confidence intervals for a determinant in a generalized multivariate Gauss-Markoff model (English)
Author: Oktaba, Wiktor
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 40
Issue: 1
Year: 1995
Pages: 55-59
Summary lang: English
.
Category: math
.
Summary: By using three theorems (Oktaba and Kieloch [3]) and Theorem 2.2 (Srivastava and Khatri [4]) three results are given in formulas (2.1), (2.8) and (2.11). They present asymptotically normal confidence intervals for the determinant $|\sigma ^2\sum |$ in the MGM model $(U,XB, \sigma ^2\sum \otimes V)$, $ \sum >0$, scalar $\sigma ^2 > 0$, with a matrix $V \ge 0$. A known $n\times p$ random matrix $U$ has the expected value $E(U) = XB$, where the $n\times d$ matrix $X$ is a known matrix of an experimental design, $B$ is an unknown $d\times p$ matrix of parameters and $\sigma ^2\sum \otimes V$ is the covariance matrix of $U,\, \otimes $ being the symbol of the Kronecker product of matrices. A particular case of Srivastava and Khatri’s [4] theorem 2.2 was published by Anderson [1], p. 173, Th. 7.5.4, when $V=I$, $ \sigma ^2 = 1$, $ X=\text{1}$ and $B = \mu ^{\prime } = [\mu _1, \dots , \mu _p]$ is a row vector. (English)
Keyword: generalized multivariate Gauss-Markoff model
Keyword: singular covariance matrix
Keyword: determinant
Keyword: asymptotically normal confidence interval
Keyword: product of independent chi-squares
Keyword: multivariate central limit theorem
Keyword: Wishart distribution
Keyword: matrix of product sums for error
Keyword: hypothesis and “total”
MSC: 62E20
MSC: 62F25
MSC: 62H10
MSC: 62J99
idZBL: Zbl 0818.62017
idMR: MR1305649
DOI: 10.21136/AM.1995.134278
.
Date available: 2009-09-22T17:46:31Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134278
.
Reference: [1] T.W. Anderson: Introduction to Multivariate Statistical Analysis.J. Wiley, New York, 1958. Zbl 0083.14601, MR 0091588
Reference: [2] W. Oktaba: Densities of determinant ratios, their moments and some simultaneous confidence intervals in the multivariate Gauss-Markoff model.Appl. Math. 40 (1995), 47–54. Zbl 0818.62055, MR 1305648
Reference: [3] W. Oktaba, A. Kieloch: Wishart distributions in the multivariate Gauss-Markoff model with singular covariance matrix.Appl. Math. 38 (1993), 61–66. MR 1202080
Reference: [4] M.S. Srivastava, C.G. Khatri: An Introduction to Multivariate Statistics.North Holland, New York, 1979. MR 0544670
.

Files

Files Size Format View
AplMat_40-1995-1_5.pdf 559.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo