Previous |  Up |  Next

Article

Title: 3-parametric robot manipulator with intersecting axes (English)
Author: Gądek, Jerzy
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 40
Issue: 2
Year: 1995
Pages: 131-145
Summary lang: English
.
Category: math
.
Summary: A $p$-parametric robot manipulator is a mapping $g$ of $\mathbb{R}^p$ into the homogeneous space $P=(C_6\times C_6)/\mathop{\rm Diag}(C_6\times C_6)$ represented by the formula $g(u_1,u_2,\dots ,u_p)=\exp (u_1 X^1)\cdot \dots \cdot \exp (u_p X^p)$, where $C_6$ is the Lie group of all congruences of $E_3$ and $X^1,X^2,\dots ,X^p$ are fixed vectors from the Lie algebra of $C_6$. In this paper the $3$-parametric robot manipulator will be expressed as a function of rotations around its axes and an invariant of the motion of this robot manipulator will be given. Most of the results presented here have been obtained during the author’s stay at Charles University in Prague. (English)
Keyword: differential geometry
Keyword: kinematic geometry
Keyword: robotics
MSC: 70B15
MSC: 70G45
idZBL: Zbl 0833.70003
idMR: MR1314483
DOI: 10.21136/AM.1995.134284
.
Date available: 2009-09-22T17:47:09Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134284
.
Reference: [1] A. Karger: Geometry of the motion of robot manipulators.Manuscripta Math. 62 (1988), 115–126. Zbl 0653.53007, MR 0958256, 10.1007/BF01258270
Reference: [2] A. Karger, J. Nowak: Space kinematics and Lie groups.Gordon and Breach, New York-London, 1985. MR 0801394
Reference: [3] A. Karger: Two parametric motions in $E_3$.Apl. mat. 32 (1987), 96–119. MR 0885757
Reference: [4] A. Karger: Classification of three parametric special motion with a transitive group of automorphisms and three-parametric robot manipulator.Acta Appl. Math. 18 (1990), 1–16. MR 1047292, 10.1007/BF00822203
Reference: [5] P.G. Ranky, C.Y. Ho: Robot modelling.Springer Verlag, Berlin, 1985.
Reference: [6] R. Sulanke: On E. Cartan’s method of moving frames.Proc. Colloq. Differential Geometry, Budapest, 1979.
.

Files

Files Size Format View
AplMat_40-1995-2_3.pdf 1.552Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo