Previous |  Up |  Next


multicomponent contaminant transport; characteristic-mixed Godunov method; domain decomposition
We discuss the formulation of a simulator in three spatial dimensions for a multicomponent, two phase (air, water) system of groundwater flow and transport with biodegradation kinetics and wells with multiple screens. The simulator has been developed for parallel, distributed memory, message passing machines. The numerical procedures employed are a fully implicit expanded mixed finite element method for flow and either a characteristics-mixed method or a Godunov method for transport and reactions of dissolved chemical species in groundwater. Domain decomposition, symmetric and nonsymmetric solvers have been developed for solving the systems of equations resulting from the discretization of the model. Results from applying this simulator to a bioremediation field problem with several injection and production wells each having multiple screens are presented.
[1] T. Arbogast, A. Chilakapati, and M. F. Wheeler: A characteristic-mixed method for contaminant transport and miscible displacement. Computational Methods in Water Resources IX, Vol. 1: Numerical Methods in Water Resources, Russell, Ewing, Brebbia, Gray, and Pindar (eds.), Computational Mechanics Publications, Southampton, U.K., 1992, pp. 77–84. MR 1195358
[2] T. Arbogast, C. N. Dawson, P. T. Keenan, M. F. Wheeler, and I. Yotov: Implementation of mixed finite element methods for elliptic equations on general geometry (submitted).
[3] T. Arbogast, C. Dawson, D. Moore, F. Saaf, C. San Soucie, M. F. Wheeler, and I. Yotov: Validation of the PICS transport code. Technical Report, Department of Computational and Applied Mathematics, Rice University, 1993.
[4] T. Arbogast, and M. F. Wheeler: A characteristics-mixed finite element method for advection dominated transport problems. SIAM J. Numerical Analysis (in press) (1995). MR 1324295
[5] T. Arbogast, and M. F. Wheeler: A parallel numerical model for subsurface contaminant transport with biodegradation kinetics. The Mathematics of Finite Elements and Applications, Whiteman, J.R. (ed.), Wiley, New York, 1994, pp. 199–213. MR 1291227
[6] T. Arbogast, M. F. Wheeler, and I. Yotov: Logically rectangular mixed methods for groundwater flow and transport on general geometry. Computational Methods in Water Resources X, Vol. 1, Peters, A., et al. (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, pp. 149–156.
[7] T. Arbogast, M. F. Wheeler, and I. Yotov: Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences (submitted).
[8] C. Y. Chiang, C. N. Dawson and M. F. Wheeler: Modeling of In-situ biorestoration of organic compounds in groundwater. Transport in Porous Media 6 (1991), 667–702. DOI 10.1007/BF00137855
[9] C. N. Dawson: Godunov-mixed methods for advective flow problems in one space dimension. SIAM J. Numer. Anal. 28, (1991), 1282–1309. DOI 10.1137/0728068 | MR 1119271 | Zbl 0741.65068
[10] C. N. Dawson: Godunov-mixed methods for advection-diffusion equations in multidimensions. SIAM J. Numer. Anal. 30 (1993), 1315–1332. DOI 10.1137/0730068 | MR 1239823 | Zbl 0791.65062
[11] J. C. Evans, R. W. Bryce, D. J. Bates, and M. L. Kemner: Hanford Site Ground-Water Surveillance for 1989. PNL-7396, Pacific Northwest Laboratory, Richland, Washington, 1990.
[12] M. C. Hagood, and V. J. Rohay: 200 West area carbon tetrachloride expedited response action project plan. WHC-SD-EN-AP-046, Westinghouse Hanford Company, Richland, Washington, 1991.
[13] B. Herrling, J. Stamm, and W. Buermann: Hydraulic circulation system for in situ bioreclamation and/or in situ remediation of strippable contamination. In Situ Bioreclamation, Applications and Investigations for Hydrocarbon and Contaminated Site Remediation, Hinchee, R.E., and Olfenbuttel, R.F. (eds.), Butterworth-Heinemann Pub., Boston, 1991, pp. 173–195.
[14] P. T. Keenan, and J. Flower: PIERS Timings on Various Parallel Supercomputers. Dept. of Computational and Applied Mathematics Tech. Report #93–29, Rice University, 1993.
[15] G. V. Last, R. J. Lenhard, B. N. Bjornstad, J. C. Evans, K. R. Roberson, F. A. Spane, J. E. Amonette, and M. L. Rockhold: Characteristics of the volatile organic compound-arid integrated demonstration site. PNL-7866, Pacific Northwest Laboratory, Richland, Washington, 1991.
[16] J. C. Parker: Multiphase flow and transport in porous media. Reviews of Geophysics 27 (1989), 311–328. DOI 10.1029/RG027i003p00311
[17] D. W. Peaceman: Fundamentals of Numerical Reservoir Simulation. Elsevier, Amsterdam, 1977.
[18] R. G. Riley: Arid site characterization and technology assessment: volatile organic compounds-arid integrated demonstration. PNL-8862, Batalle, Pacific Northwest Laboratory, 1993.
[19] R. S. Skeen, K. R. Roberson, T. M. Brouns, J. N. Petersen, and M. Shouche: In-situ bioremediation of Hanford groundwater. Proceedings of the 1st Federal Environmental Restoration Conference, Vienna, Virginia, 1992.
[20] J. M. Thomas, M. D. Lee, P. B. Bedient, R. C. Borden, L. W. Canter, and C. H. Ward: Leaking underground storage tanks: remediation with emphasis on in situ biorestoration. Environmental Protection Agency 600/2-87, 008, 1987.
[21] J. A. Wheeler, R. and Smith: Reservoir simulation on a hypercube, SPE 19804. Proceedings of the 64th Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Richardson, Texas, 1989.
[22] M. F. Wheeler, C. N. Dawson, P. B. Bedient, C. Y. Chiang, R. C. Borden, and H. S. Rifai: Numerical simulation of microbial biodegradation of hydrocarbons in groundwater. Proceedings of AGWSE/IGWMCH Conference on Solving Ground Water Problems with Models, National Water Wells Association, 1987, pp. 92–108.
Partner of
EuDML logo