Full entry |
PDF
(3.2 MB)
Feedback

mixed method; finite element; compressible flow; porous media; error estimate; air-water system

References:

[1] J. Bear: **Dynamics of Fluids in Porous Media**. Dover, New York, 1972.

[2] F. Brezzi, J. Douglas, Jr., R. Durán, and M. Fortin: **Mixed finite elements for second order elliptic problems in three variables**. Numer. Math. 51 (1987), 237–250. DOI 10.1007/BF01396752 | MR 0890035

[3] F. Brezzi, J. Douglas, Jr., M. Fortin, and L. Marini: **Efficient rectangular mixed finite elements in two and three space variables**. RAIRO Modèl. Math. Anal. Numér 21 (1987), 581–604. DOI 10.1051/m2an/1987210405811 | MR 0921828

[4] F. Brezzi, J. Douglas, Jr., and L. Marini: **Two families of mixed finite elements for second order elliptic problems**. Numer. Math. 47 (1985), 217–235. DOI 10.1007/BF01389710 | MR 0799685

[5] M. Celia and P. Binning: **Two-phase unsaturated flow: one dimensional simulation and air phase velocities**. Water Resources Research 28 (1992), 2819–2828.

[6] G. Chavent and J. Jaffré: **Mathematical Models and Finite Elements for Reservoir Simulation**. North-Holland, Amsterdam, 1978.

[7] Z. Chen: **Analysis of mixed methods using conforming and nonconforming finite element methods**. RAIRO Modèl. Math. Anal. Numér. 27 (1993), 9–34. DOI 10.1051/m2an/1993270100091 | MR 1204626 | Zbl 0784.65075

[8] Z. Chen: **Finite element methods for the black oil model in petroleum reservoirs**. IMA Preprint Series $\#$ 1238, submitted to Math. Comp.

[9] Z. Chen and J. Douglas, Jr.: **Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems**. Mat. Aplic. Comp. 10 (1991), 137–160. MR 1172090

[10] Z. Chen and J. Douglas, Jr.: **Prismatic mixed finite elements for second order elliptic problems**. Calcolo 26 (1989), 135–148. DOI 10.1007/BF02575725 | MR 1083050

[11] Z. Chen, R. Ewing, and M. Espedal: **Multiphase flow simulation with various boundary conditions**. Numerical Methods in Water Resources, Vol. 2, A. Peters, et als. (eds.), Kluwer Academic Publishers, Netherlands, 1994, pp. 925–932.

[12] S. Chou and Q. Li: **Mixed finite element methods for compressible miscible displacement in porous media**. Math. Comp. 57 (1991), 507–527. DOI 10.1090/S0025-5718-1991-1094942-7 | MR 1094942

[13] P. Ciarlet: **The Finite Element Method for Elliptic Problems**. North-Holland, Amsterdam, 1978. MR 0520174 | Zbl 0383.65058

[14] J. Douglas, Jr.: **Finite difference methods for two-phase incompressible flow in porous media**. SIAM J. Numer. Anal. 20 (1983), 681–696. DOI 10.1137/0720046 | MR 0708451 | Zbl 0519.76107

[15] J. Douglas, Jr. and J. Roberts: **Numerical methods for a model for compressible miscible displacement in porous media**. Math. Comp. 41 (1983), 441–459. DOI 10.1090/S0025-5718-1983-0717695-3 | MR 0717695

[16] J. Douglas, Jr. and J. Roberts: **Global estimates for mixed methods for second order elliptic problems**. Math. Comp. 45 (1985), 39–52. MR 0771029

[17] N. S. Espedal and R. E. Ewing: **Characteristic Petrov-Galerkin subdomain methods for two phase immiscible flow**. Comput. Methods Appl. Mech. Eng. 64 (1987), 113–135. DOI 10.1016/0045-7825(87)90036-3 | MR 0912516

[18] R. Ewing and M. Wheeler: **Galerkin methods for miscible displacement problems with point sources and sinks-unit mobility ratio case**. Mathematical Methods in Energy Research, K. I. Gross, ed., Society for Industrial and Applied Mathematics, Philadelphia, 1984, pp. 40–58. MR 0790511

[19] K. Fadimba and R. Sharpley: **A priori estimates and regularization for a class of porous medium equations**. Preprint, submitted to Nonlinear World. MR 1376946

[20] K. Fadimba and R. Sharpley: **Galerkin finite element method for a class of porous medium equations**. Preprint. MR 2025071

[21] D. Hillel: **Fundamentals of Soil Physics**. Academic Press, San Diego, California, 1980.

[22] C. Johnson and V. Thomée: **Error estimates for some mixed finite element methods for parabolic type problems**. RAIRO Anal. Numér. 15 (1981), 41–78. DOI 10.1051/m2an/1981150100411 | MR 0610597

[23] H. J. Morel-Seytoux: **Two-phase flows in porous media**. Advances in Hydroscience 9 (1973), 119–202. DOI 10.1016/B978-0-12-021809-7.50009-2

[24] J. C. Nedelec: **Mixed finite elements in $\Re ^3$**. Numer. Math. 35 (1980), 315–341. DOI 10.1007/BF01396415 | MR 0592160

[25] J. Nitsche: **$L_\infty $-Convergence of Finite Element Approximation**. Proc. Second Conference on Finite Elements, Rennes, France, 1975. MR 0568857

[26] D. W. Peaceman: **Fundamentals of Numerical Reservoir Simulation**. Elsevier, New York, 1977.

[27] O. Pironneau: **On the transport-diffusion algorithm and its application to the Navier-Stokes equations**. Numer. Math. 38 (1982), 309–332. DOI 10.1007/BF01396435 | MR 0654100

[28] P.A. Raviart and J.M. Thomas: **A mixed finite element method for second order elliptic problems**. Lecture Notes in Math. 606, Springer, Berlin, 1977, pp. 292–315. MR 0483555

[29] M. Rose: **Numerical Methods for flow through porous media I**. Math. Comp. 40 (1983), 437–467. DOI 10.1090/S0025-5718-1983-0689465-6 | MR 0689465

[30] A. Schatz, V. Thomée, and L. Wahlbin: **Maximum norm stability and error estimates in parabolic finite element equations**. Comm. Pure Appl. Math. 33 (1980), 265–304. DOI 10.1002/cpa.3160330305 | MR 0562737

[31] R. Scott: **Optimal $L^\infty $ estimates for the finite element method on irregular meshes**. Math. Comp. 30 (1976), 681–697. MR 0436617

[32] D. Smylie: **A near optimal order approximation to a class of two sided nonlinear degenerate parabolic partial differential equations**. Ph. D. Thesis, University of Wyoming, 1989.

[32] M. F. Wheeler: **A priori $L_2$ error estimates for Galerkin approximation to parabolic partial differential equations**. SIAM J. Numer. Anal. 10 (1973), 723–759. DOI 10.1137/0710062 | MR 0351124