Previous |  Up |  Next

Article

Title: Continuous-time finite element analysis of multiphase flow in groundwater hydrology (English)
Author: Chen, Zhangxin
Author: Espedal, Magne
Author: Ewing, Richard E.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 40
Issue: 3
Year: 1995
Pages: 203-226
Summary lang: English
.
Category: math
.
Summary: A nonlinear differential system for describing an air-water system in groundwater hydrology is given. The system is written in a fractional flow formulation, i.e., in terms of a saturation and a global pressure. A continuous-time version of the finite element method is developed and analyzed for the approximation of the saturation and pressure. The saturation equation is treated by a Galerkin finite element method, while the pressure equation is treated by a mixed finite element method. The analysis is carried out first for the case where the capillary diffusion coefficient is assumed to be uniformly positive, and is then extended to a degenerate case where the diffusion coefficient can be zero. It is shown that error estimates of optimal order in the $L^2$-norm and almost optimal order in the $L^\infty $-norm can be obtained in the nondegenerate case. In the degenerate case we consider a regularization of the saturation equation by perturbing the diffusion coefficient. The norm of error estimates depends on the severity of the degeneracy in diffusivity, with almost optimal order convergence for non-severe degeneracy. Existence and uniqueness of the approximate solution is also proven. (English)
Keyword: mixed method
Keyword: finite element
Keyword: compressible flow
Keyword: porous media
Keyword: error estimate
Keyword: air-water system
MSC: 65M60
MSC: 65N30
MSC: 76M10
MSC: 76S05
idZBL: Zbl 0847.76030
idMR: MR1332314
DOI: 10.21136/AM.1995.134291
.
Date available: 2009-09-22T17:47:54Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134291
.
Reference: [1] J. Bear: Dynamics of Fluids in Porous Media.Dover, New York, 1972.
Reference: [2] F. Brezzi, J. Douglas, Jr., R. Durán, and M. Fortin: Mixed finite elements for second order elliptic problems in three variables.Numer. Math. 51 (1987), 237–250. MR 0890035, 10.1007/BF01396752
Reference: [3] F. Brezzi, J. Douglas, Jr., M. Fortin, and L. Marini: Efficient rectangular mixed finite elements in two and three space variables.RAIRO Modèl. Math. Anal. Numér 21 (1987), 581–604. MR 0921828, 10.1051/m2an/1987210405811
Reference: [4] F. Brezzi, J. Douglas, Jr., and L. Marini: Two families of mixed finite elements for second order elliptic problems.Numer. Math. 47 (1985), 217–235. MR 0799685, 10.1007/BF01389710
Reference: [5] M. Celia and P. Binning: Two-phase unsaturated flow: one dimensional simulation and air phase velocities.Water Resources Research 28 (1992), 2819–2828.
Reference: [6] G. Chavent and J. Jaffré: Mathematical Models and Finite Elements for Reservoir Simulation.North-Holland, Amsterdam, 1978.
Reference: [7] Z. Chen: Analysis of mixed methods using conforming and nonconforming finite element methods.RAIRO Modèl. Math. Anal. Numér. 27 (1993), 9–34. Zbl 0784.65075, MR 1204626, 10.1051/m2an/1993270100091
Reference: [8] Z. Chen: Finite element methods for the black oil model in petroleum reservoirs.IMA Preprint Series $\#$ 1238, submitted to Math. Comp.
Reference: [9] Z. Chen and J. Douglas, Jr.: Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems.Mat. Aplic. Comp. 10 (1991), 137–160. MR 1172090
Reference: [10] Z. Chen and J. Douglas, Jr.: Prismatic mixed finite elements for second order elliptic problems.Calcolo 26 (1989), 135–148. MR 1083050, 10.1007/BF02575725
Reference: [11] Z. Chen, R. Ewing, and M. Espedal: Multiphase flow simulation with various boundary conditions.Numerical Methods in Water Resources, Vol. 2, A. Peters, et als. (eds.), Kluwer Academic Publishers, Netherlands, 1994, pp. 925–932.
Reference: [12] S. Chou and Q. Li: Mixed finite element methods for compressible miscible displacement in porous media.Math. Comp. 57 (1991), 507–527. MR 1094942, 10.1090/S0025-5718-1991-1094942-7
Reference: [13] P. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [14] J. Douglas, Jr.: Finite difference methods for two-phase incompressible flow in porous media.SIAM J. Numer. Anal. 20 (1983), 681–696. Zbl 0519.76107, MR 0708451, 10.1137/0720046
Reference: [15] J. Douglas, Jr. and J. Roberts: Numerical methods for a model for compressible miscible displacement in porous media.Math. Comp. 41 (1983), 441–459. MR 0717695, 10.1090/S0025-5718-1983-0717695-3
Reference: [16] J. Douglas, Jr. and J. Roberts: Global estimates for mixed methods for second order elliptic problems.Math. Comp. 45 (1985), 39–52. MR 0771029
Reference: [17] N. S. Espedal and R. E. Ewing: Characteristic Petrov-Galerkin subdomain methods for two phase immiscible flow.Comput. Methods Appl. Mech. Eng. 64 (1987), 113–135. MR 0912516, 10.1016/0045-7825(87)90036-3
Reference: [18] R. Ewing and M. Wheeler: Galerkin methods for miscible displacement problems with point sources and sinks-unit mobility ratio case.Mathematical Methods in Energy Research, K. I. Gross, ed., Society for Industrial and Applied Mathematics, Philadelphia, 1984, pp. 40–58. MR 0790511
Reference: [19] K. Fadimba and R. Sharpley: A priori estimates and regularization for a class of porous medium equations.Preprint, submitted to Nonlinear World. MR 1376946
Reference: [20] K. Fadimba and R. Sharpley: Galerkin finite element method for a class of porous medium equations.Preprint. MR 2025071
Reference: [21] D. Hillel: Fundamentals of Soil Physics.Academic Press, San Diego, California, 1980.
Reference: [22] C. Johnson and V. Thomée: Error estimates for some mixed finite element methods for parabolic type problems.RAIRO Anal. Numér. 15 (1981), 41–78. MR 0610597, 10.1051/m2an/1981150100411
Reference: [23] H. J. Morel-Seytoux: Two-phase flows in porous media.Advances in Hydroscience 9 (1973), 119–202. 10.1016/B978-0-12-021809-7.50009-2
Reference: [24] J. C. Nedelec: Mixed finite elements in $\Re ^3$.Numer. Math. 35 (1980), 315–341. MR 0592160, 10.1007/BF01396415
Reference: [25] J. Nitsche: $L_\infty $-Convergence of Finite Element Approximation.Proc. Second Conference on Finite Elements, Rennes, France, 1975. MR 0568857
Reference: [26] D. W. Peaceman: Fundamentals of Numerical Reservoir Simulation.Elsevier, New York, 1977.
Reference: [27] O. Pironneau: On the transport-diffusion algorithm and its application to the Navier-Stokes equations.Numer. Math. 38 (1982), 309–332. MR 0654100, 10.1007/BF01396435
Reference: [28] P.A. Raviart and J.M. Thomas: A mixed finite element method for second order elliptic problems.Lecture Notes in Math. 606, Springer, Berlin, 1977, pp. 292–315. MR 0483555
Reference: [29] M. Rose: Numerical Methods for flow through porous media I.Math. Comp. 40 (1983), 437–467. MR 0689465, 10.1090/S0025-5718-1983-0689465-6
Reference: [30] A. Schatz, V. Thomée, and L. Wahlbin: Maximum norm stability and error estimates in parabolic finite element equations.Comm. Pure Appl. Math. 33 (1980), 265–304. MR 0562737, 10.1002/cpa.3160330305
Reference: [31] R. Scott: Optimal $L^\infty $ estimates for the finite element method on irregular meshes.Math. Comp. 30 (1976), 681–697. MR 0436617
Reference: [32] D. Smylie: A near optimal order approximation to a class of two sided nonlinear degenerate parabolic partial differential equations.Ph. D. Thesis, University of Wyoming, 1989.
Reference: [32] M. F. Wheeler: A priori $L_2$ error estimates for Galerkin approximation to parabolic partial differential equations.SIAM J. Numer. Anal. 10 (1973), 723–759. MR 0351124, 10.1137/0710062
.

Files

Files Size Format View
AplMat_40-1995-3_4.pdf 3.273Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo