Previous |  Up |  Next

Article

Title: Combining the preconditioned conjugate gradient method and a matrix iterative method (English)
Author: Zítko, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 41
Issue: 1
Year: 1996
Pages: 19-39
Summary lang: English
.
Category: math
.
Summary: The preconditioned conjugate gradient method for solving the system of linear algebraic equations with a positive definite matrix is investigated. The initial approximation for conjugate gradient is constructed as a result of a matrix iteration method after $m$ steps. The behaviour of the error vector for such a combined method is studied and special numerical tests and conclusions are made. (English)
Keyword: conjugate gradients
Keyword: preconditioning
Keyword: iterative method
Keyword: numerical experiments
MSC: 65F10
MSC: 65F35
idZBL: Zbl 0847.65016
idMR: MR1365137
DOI: 10.21136/AM.1996.134311
.
Date available: 2009-09-22T17:50:01Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134311
.
Reference: [G-L] G.H. Golub, C.F. Van Loan: Matrix Computation.The John Hopkins University Press, Baltimore, 1984.
Reference: [E-G] H.C. Elman, G.H. Golub: Block Iterative Methods for Cyclically Reduced Non-Self-Adjoint Elliptic Problems.Chapter 6 in the book “Iterative Methods for Large Linear Systems” edited by David R. Kincaid and Linda J. Hayes, Center for Numerical Analysis The University of Texas at Austin, Academic Press, 1989.
Reference: [He] P. Henrici: The Quotient-Difference Algorithm.Further Contribution to the Solution of Simultaneous Linear Equations and the Determination of Eigenvalues, Vol. 49, National Bureau of Standards Applied Mathematics Series, 1958. Zbl 0136.12803, MR 0094901
Reference: [D.O’L] D.P. O’Leary: The Block Conjugate Gradient Algorithm and Related Methods., Linear Algebra Appl. 29 (1980), 293–322. MR 0562766, 10.1016/0024-3795(80)90247-5
Reference: [Si 88] A. Sidi: Extrapolation vs. Projection Methods for Linear Systems of Equations.J. Comput. Appl. Math. 22 (1988), 71–88. Zbl 0646.65031, MR 0948887, 10.1016/0377-0427(88)90289-0
Reference: [Si-F-Sm] A. Sidi, W.F. Ford, D.A. Smith: Acceleration of Convergence of Vector Sequences.SIAM J. Numer. Anal. 23 (1986), no. 1, 178–196. MR 0821914, 10.1137/0723013
Reference: [Si 86] A. Sidi: Convergence and Stability Properties of Minimal Polynomial and Reduced Rank Extrapolation Algorithms., SIAM J. Numer. Anal. 23 (1986), no. 1, 197–209. Zbl 0612.65001, MR 0821915, 10.1137/0723014
Reference: [S-S 86] Y. Saad, M.H. Schultz: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems., SIAM J. Sci. Stat. Comput. 7 (1986), no. 3, 856–869. MR 0848568, 10.1137/0907058
Reference: [V] R.L. Varga: Matrix iterative analysis.Prentice-Hall Englewood Clifs, New Jersey, 1962. MR 0158502
Reference: [V-V 93] H.A. Van der Vorst, C. Vuik: The superlinear convergence behaviour of GMRES.J. Comput. Appl. Math. 48 (1993), 327–341. MR 1252545, 10.1016/0377-0427(93)90028-A
Reference: [Y] D.M. Young: Iterative solution of large linear systems.Academic Press, New York-London, 1971. Zbl 0231.65034, MR 0305568
Reference: [Zi 83] J. Zítko: Improving the Convergence of Iterative Methods.Apl. Mat. 28 (1983), 215–229. MR 0701740
Reference: [Zi 84] J. Zítko: Convergence of Extrapolation Coefficients., Apl. Mat. 29 (1984), 114–133. MR 0738497
Reference: [Zi 92] J. Zítko: Numerical experiments with extrapolated procedures.Programy a algoritmy numerické matematiky 6, Sborník kursu, Bratříkov 1992, pp. 178–187. (Czech)
Reference: [Zi 93] J. Zítko: Combining the preconditioned conjugate gradient method and the norm-reducing matrix iterative method.Technical report No 106/93, Prague 1993, pp. 1–17.
.

Files

Files Size Format View
AplMat_41-1996-1_2.pdf 1.985Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo