Previous |  Up |  Next

Article

Title: On the solvability of some multi-point boundary value problems (English)
Author: Gupta, Chaitan P.
Author: Ntouyas, S. K.
Author: Tsamatos, P. Ch.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 41
Issue: 1
Year: 1996
Pages: 1-17
Summary lang: English
.
Category: math
.
Summary: Let $f\colon [0,1]\times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function satisfying Caratheodory’s conditions and let $e(t)\in L^{1}[0,1]$. Let $\xi _{i}, \tau _{j}\in (0,1)$, $ c_{i},a_{j}\in \mathbb{R}$, all of the $c_{i}$’s, (respectively, $a_{j}$’s) having the same sign, $i=1,2,\ldots ,m-2$, $j=1,2,\ldots ,n-2$, $0 < \xi _{1}<\xi _{2}<\ldots <\xi _{m-2}<1$, $0 < \tau _{1}<\tau _{2}<\ldots <\tau _{n-2}<1$ be given. This paper is concerned with the problem of existence of a solution for the multi-point boundary value problems \begin{align*} x^{\prime\prime}(t)=f(t, x(t),x^{\prime}(t))+e(t),\qquad t\in (0,1)\tag{E} \\ x(0)=\sum\limits_{i=1}^{m-2} c_{i}x^{\prime}(\xi_{i}),\qquad x(1)=\sum\limits_{j=1}^{n-2} a_{j}x(\tau_{j}) \tag{BC$_{mn}$}\end{align*} and \begin{align*} x^{\prime\prime}(t)=f(t, x(t),x^{\prime}(t))+e(t),\qquad t\in (0,1)\tag {E}\\ x(0)=\sum\limits_{i=1}^{m-2} c_{i}x^{\prime}(\xi_{i}),\qquad x^{\prime}(1)=\sum\limits_{j=1}^{n-2} a_{j}x^{\prime}(\tau_{j}), \tag{BC$_{mn}$'} \end{align*} Conditions for the existence of a solution for the above boundary value problems are given using Leray-Schauder Continuation theorem. (English)
Keyword: multi-point boundary value problems
Keyword: four point boundary value problems
Keyword: Leray-Schauder Continuation theorem
Keyword: a priori bounds
MSC: 34B10
MSC: 34B15
idZBL: Zbl 0858.34013
idMR: MR1365136
DOI: 10.21136/AM.1996.134310
.
Date available: 2009-09-22T17:49:55Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134310
.
Reference: [1] C. P. Gupta: Solvability of a three-point boundary value problem for a second order ordinary differential equation.Jour. Math. Anal. Appl. 168 (1992), 540–551. MR 1176010, 10.1016/0022-247X(92)90179-H
Reference: [2] C. P. Gupta: A note on a second order three-point boundary value problem.Jour. Math. Anal. Appl. 186 (1994), 277–281. Zbl 0805.34017, MR 1290657, 10.1006/jmaa.1994.1299
Reference: [3] C. Gupta, S. Ntouyas and P. Tsamatos: On an $m$-point boundary value problem for second order ordinary differential equations.Nonlinear Analysis 23 (1994), 1427–1436. MR 1306681, 10.1016/0362-546X(94)90137-6
Reference: [4] C. Gupta, S. Ntouyas and P. Tsamatos: Existence results for $m$-point boundary value problems.Differential Equations and Dynamical Systems 2 (1994), 289–298. MR 1386275
Reference: [5] V. Il’in and E. Moiseev: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects.Differential Equations 23 (1987), 803–810.
Reference: [6] V. Il’in and E. Moiseev: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator.Differential Equations 23 (1987), 979–987.
Reference: [7] S. A. Marano: A remark on a second order three-point boundary value problem.Jour. Math. Anal. Appl. 183 (1994), 518–522. Zbl 0801.34025, MR 1274852, 10.1006/jmaa.1994.1158
Reference: [8] J. Mawhin: Topological degree methods in nonlinear boundary value problems.“NSF-CBMS Regional Conference Series in Math.” No. 40, Amer. Math. Soc., Providence, RI, 1979. Zbl 0414.34025, MR 0525202
.

Files

Files Size Format View
AplMat_41-1996-1_1.pdf 1.642Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo