Previous |  Up |  Next

Article

Title: Numerical realization of a fictitious domain approach used in shape optimization. Part I: Distributed controls (English)
Author: Daňková, Jana
Author: Haslinger, Jaroslav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 41
Issue: 2
Year: 1996
Pages: 123-147
Summary lang: English
.
Category: math
.
Summary: We deal with practical aspects of an approach to the numerical realization of optimal shape design problems, which is based on a combination of the fictitious domain method with the optimal control approach. Introducing a new control variable in the right-hand side of the state problem, the original problem is transformed into a new one, where all the calculations are performed on a fixed domain. Some model examples are presented. (English)
Keyword: shape optimization
Keyword: fictitious domain approach
MSC: 49A22
MSC: 49D30
MSC: 49J20
MSC: 49M30
MSC: 49Q10
idZBL: Zbl 0854.49004
idMR: MR1373477
DOI: 10.21136/AM.1996.134317
.
Date available: 2009-09-22T17:50:40Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134317
.
Reference: [1] C. Atamian, G. V. Dinh, R. Glowinski, J. He and J. Periaux: On some embedding methods applied to fluid dynamics and electro-magnetics.Comput. Methods Appl. Mech. and Engrg. 91 (1991), 1271–1299. MR 1145790, 10.1016/0045-7825(91)90078-K
Reference: [2] R. Glowinski, A. J. Kearsley, T. W. Pan and J. Periaux: Numerical simulation and optimal shape for viscous flow by a fictitious domain method.Int. J. for Numerical Methods in Fluids 20 (1995), 695–711. MR 1333904, 10.1002/fld.1650200803
Reference: [3] R. Glowinski, T. W. Pan and J. Periaux: A fictitious domain method for Dirichlet problem and applications.Comput. Methods Appl. Mech. Engrg 111 (1994), 283–303. MR 1259864, 10.1016/0045-7825(94)90135-X
Reference: [4] J. Haslinger: Embedding/Control Approach for Solving Optimal Shape Design Problems.East-West J. Numer. Math. 1, No 2 (1993), 111–119. MR 1253630
Reference: [5] J. Haslinger, K.-H. Hoffmann, M. Kočvara: Control/fictitious domain method for solving optimal shape design problems.RAIRO Modèl. Math. Anal. Numér. 27 (2) (1993), 157–182. MR 1211614, 10.1051/m2an/1993270201571
Reference: [6] J. Haslinger and A. Klarbring: Fictitious domain/mixed finite element approach for a class of optimal shape design problems.Math. Modelling and Numerical Analysis (M$^2$AN) 29 (1995), no. 4, 435–450. MR 1346278, 10.1051/m2an/1995290404351
Reference: [7] J. Haslinger and P. Neittaanmäki: Finite element approximation for optimal shape, material and topology design, Second edition.J. Wiley & Sons, New-York, 1966. MR 1419500
Reference: [8] K. Schittkowski: A Fortran Subroutine Solving Constrained Nonlinear Programming Problems.Ann. Oper. Res. 5 (1985/6), 485–500. MR 0948031, 10.1007/BF02739235
.

Files

Files Size Format View
AplMat_41-1996-2_3.pdf 2.736Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo