Previous |  Up |  Next

Article

Title: Dynamic credibility with outliers and missing observations (English)
Author: Cipra, Tomáš
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 41
Issue: 2
Year: 1996
Pages: 149-159
Summary lang: English
.
Category: math
.
Summary: In actuarial practice the credibility models must face the problem of outliers and missing observations. If using the $M$-estimation principle from robust statistics in combination with Kalman filtering one obtains the solution of this problem that is acceptable in the numerical framework of the practical actuarial credibility. The credibility models are classified as static and dynamic in this paper and the shrinkage is used for the final ratemaking. (English)
Keyword: credibility
Keyword: actuarial science
Keyword: outliers
Keyword: missing observations
Keyword: robust Kalman filter
Keyword: shrinkage
Keyword: time series
Keyword: risk
MSC: 60G35
MSC: 62M20
MSC: 62P05
MSC: 93E11
idZBL: Zbl 0855.62092
idMR: MR1373478
DOI: 10.21136/AM.1996.134318
.
Date available: 2009-09-22T17:50:47Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134318
.
Reference: [1] D. Birkes, Y. Dodge: Alternative Methods of Regression.Wiley, New York, 1993. MR 1227984
Reference: [2] H. Bühlmann, A. Gisler, W. Jewell: Excess claims and data trimming in the context of credibility rating procedures.Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker 82 (1982), 117–147.
Reference: [3] H. Bühlmann, E. Straub: Glaubwürdigkeit für Schadensätze.Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker 70 (1970), 11–113.
Reference: [4] T. Cipra, R. Romera: Robust Kalman filter and its application in time series analysis.Kybernetika 27 (1991), 481–494. MR 1150938
Reference: [5] P. deJong, B. Zehnwirth: Credibility theory and the Kalman filter.Insurance: Mathematics and Economics 2 (1983), 281–286. MR 0721576
Reference: [6] F. deVylder: Practical credibility theory with emphasis on optimal parameter estimation.ASTIN Bulletin 12 (1981), 115–131. MR 0660732, 10.1017/S0515036100007054
Reference: [7] F. deVylder: Practical models in credibility theory, including parameter estimation.Premium Calculation in Insurance, F. deVylder, M. Goovaerts, J Haezendonck (eds.), Reidel, 1984. MR 0786667
Reference: [8] R. Dutter: Robust regression: Different approaches to numerical solution and algorithms.Research Report No. 6 (1975), ETH Zürich.
Reference: [9] H. Gerber, D. Jones: Credibility formulas of the updating type.Transactions of the Society of Actuaries 27 (1975), 31–46. MR 0411094
Reference: [10] A. Gisler, P. Reinhard: Robust credibility.ASTIN Bulletin 23 (1993), 117–143. 10.2143/AST.23.1.2005104
Reference: [11] C. Hachemeister: Credibility for regression models with applications to trend.Credibility: Theory and Applications, P.M. Kahn (ed.), Academic Press, New York, 1975. MR 0411061
Reference: [12] A. Harvey, C. Fernandes: Time series models for insurance claims.Journal of Institute of Actuaries 116 (1989), 513–528. 10.1017/S0020268100036672
Reference: [13] P. Huber: Robust Statistics.Wiley, New York, 1981. Zbl 0536.62025, MR 0606374
Reference: [14] E. Kremer: Credibility theory for some evolutionary models.Scandinavian Actuarial Journal (1982), 129–142. Zbl 0503.62088, MR 0685879, 10.1080/03461238.1982.10405260
Reference: [15] E. Kremer: Large claims in credibility.Blätter der Deutschen Gesellschaft für Versicherungsmathematik 20 (1991), 123–150. Zbl 0738.62097
Reference: [16] E. Kremer: Empirical Kalman-credibility.Blätter der Deutschen Gesellschaft für Versicherungsmathematik 22 (1995), 17–28. Zbl 0817.62086
Reference: [17] E. Kremer: Robust credibility via robust Kalman filtering.ASTIN Bulletin 24 (1994), 221–233. 10.2143/AST.24.2.2005066
Reference: [18] H.R. Künsch: Robust methods for credibility.ASTIN Bulletin 22 (1992), 33–49. 10.2143/AST.22.1.2005125
Reference: [19] J. Ledolter, S. Klugman, C.S. Lee: Credibility models with time-varying trend components.ASTIN Bulletin 21 (1991), 73–91. 10.2143/AST.21.1.2005402
Reference: [20] J. Ledolter, C.S. Lee: Analysis of many short time sequences: Forecast improvements achieved by shrinkage.Journal of Forecasting 12 (1993), 1–11. 10.1002/for.3980120102
Reference: [21] W. Neuhaus: Early warning.Scandinavian Actuarial Journal (1987), 128–156. Zbl 0656.62108, MR 0943577, 10.1080/03461238.1987.10413824
Reference: [22] D. Peña, J. Guttman: Optimal collapsing of mixture distributions in robust recursive estimation.Commun. Statist. – Theory Meth. 18 (1989), 817–833. MR 1001623, 10.1080/03610928908829936
Reference: [23] R. Romera, T. Cipra: Practical implementation of robust Kalman filtering.Commun. Statist. – Simulation and Computation 24 (1995), 461–488. MR 1333047, 10.1080/03610919508813252
Reference: [24] K.D. Schmidt: Stochastische Modellierung in der Erfahrungstarifierung.Blätter der Deutschen Gesellschaft für Versicherungsmathematik 20 (1992), 441–455. Zbl 0781.62166
Reference: [25] B. Sundt: Recursive credibility estimation.Scandinavian Actuarial Journal (1981), 3–21. Zbl 0463.62093, MR 0611125, 10.1080/03461238.1981.10413728
.

Files

Files Size Format View
AplMat_41-1996-2_4.pdf 1.191Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo