Previous |  Up |  Next

Article

Title: Cauchy problem for the non-newtonian viscous incompressible fluid (English)
Author: Pokorný, Milan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 41
Issue: 3
Year: 1996
Pages: 169-201
Summary lang: English
.
Category: math
.
Summary: We study the Cauchy problem for the non-Newtonian incompressible fluid with the viscous part of the stress tensor $\tau ^V(\mathbb{e}) = \tau (\mathbb{e}) - 2\mu _1 \Delta \mathbb{e}$, where the nonlinear function $\tau (\mathbb{e})$ satisfies $\tau _{ij}(\mathbb{e})e_{ij} \ge c|\mathbb{e}|^p$ or $\tau _{ij}(\mathbb{e})e_{ij} \ge c(|\mathbb{e}|^2+|\mathbb{e}|^p)$. First, the model for the bipolar fluid is studied and existence, uniqueness and regularity of the weak solution is proved for $p > 1$ for both models. Then, under vanishing higher viscosity $\mu _1$, the Cauchy problem for the monopolar fluid is considered. For the first model the existence of the weak solution is proved for $p > \frac{3n}{n+2}$, its uniqueness and regularity for $p \ge 1 + \frac{2n}{n+2}$. In the case of the second model the existence of the weak solution is proved for $p>1$. (English)
Keyword: non-Newtonian incompressible fluids
Keyword: Navier-Stokes equations
Keyword: Cauchy problem
MSC: 35Q30
MSC: 76A05
idZBL: Zbl 0863.76003
idMR: MR1382464
DOI: 10.21136/AM.1996.134320
.
Date available: 2009-09-22T17:51:01Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134320
.
Reference: [1] R. A. Adams: Sobolev Spaces.Academic Press, 1975. Zbl 0314.46030, MR 0450957
Reference: [2] H. Bellout, F. Bloom, J. Nečas: Young Measure-Valued Solutions for Non-Newtonian Incompressible Fluids.Preprint, 1991. MR 1301173
Reference: [3] H. Bellout, F. Bloom, J. Nečas: Phenomenological Behaviour of Multipolar Viscous Fluids.Quaterly of Applied Mathematics 54 (1992), no. 3, 559–584. MR 1178435, 10.1090/qam/1178435
Reference: [4] M. E. Bogovskij: Solutions of Some Problems of Vector Analysis with the Operators div and grad.Trudy Sem. S. L. Soboleva (1980), 5–41. (Russian)
Reference: [5] N. Dunford, J. T. Schwarz: Linear Operators: Part I. General Theory.Interscience Publishers Inc., New York, 1958.
Reference: [6] H. Gajewski, K. Gröger, K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie Verlag, Berlin, 1974. MR 0636412
Reference: [7] J. Kurzweil: Ordinary Differential Equations.Elsevier, 1986. Zbl 0667.34002, MR 0929466
Reference: [8] O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Flow.Gordon and Beach, New York, 1969. MR 0254401
Reference: [9] D. Leigh: Nonlinear Continuum Mechanics.McGraw-Hill, New York, 1968.
Reference: [10] J. L. Lions: Qeulques méthodes de résolution des problèms aux limites non lineaires.Dunod, Paris, 1969. MR 0259693
Reference: [11] J. Málek, J. Nečas, A. Novotný: Measure-valued solutions and asymptotic behavior of a multipolar model of a boundary layer.Czech. Math. Journal 42 (1992), no. 3, 549–575. MR 1179317
Reference: [12] J. Málek, J. Nečas, M. Růžička: On Non-Newtonian Incompressible Fluids.M3AS 1 (1993). MR 1203271
Reference: [13] J. Nečas: An Introduction to Nonlinear Elliptic Equations.J. Wiley, 1984.
Reference: [14] J. Nečas: Theory of Multipolar Viscous Fluids.The mathematics of finite elements and applications VII, MAFELAP 1990, J. R. Whiteman (ed.), Academic Press, 1991, pp. 233–244. MR 1132501
Reference: [15] J. Nečas, M. Šilhavý: Multipolar Viscous Fluids.Quaterly of Applied Mathematics 49 (1991), no. 2, 247–266. MR 1106391, 10.1090/qam/1106391
Reference: [16] M. Pokorný: Cauchy Problem for the Non-Newtonian Incompressible Fluid (Master degree thesis, Faculty of Mathematics and Physics, Charles University, Prague.1993.
Reference: [17] K. R. Rajagopal: Mechanics of Non-Newtonian Fluids.G. P. Galdi, J. Nečas: Recent Developments in Theoretical Fluid Dynamics, Pitman Research Notes in Math. Series 291, 1993. Zbl 0818.76003, MR 1268237
Reference: [18] R. Temam: Navier-Stokes Equations—Theory and Numerical Analysis.North Holland, Amsterodam-New York-Oxford, 1979. Zbl 0426.35003, MR 0603444
Reference: [19] H. Triebel: Theory of Function Spaces.Birkhäuser Verlag, Leipzig, 1983. Zbl 0546.46028, MR 0781540
Reference: [20] H. Triebel: Interpolation Theory, Function Spaces, Differential Operators.Verlag der Wiss., Berlin, 1978. Zbl 0387.46033, MR 0500580
.

Files

Files Size Format View
AplMat_41-1996-3_2.pdf 3.564Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo