Title:
|
Cauchy problem for the non-newtonian viscous incompressible fluid (English) |
Author:
|
Pokorný, Milan |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
41 |
Issue:
|
3 |
Year:
|
1996 |
Pages:
|
169-201 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the Cauchy problem for the non-Newtonian incompressible fluid with the viscous part of the stress tensor $\tau ^V(\mathbb{e}) = \tau (\mathbb{e}) - 2\mu _1 \Delta \mathbb{e}$, where the nonlinear function $\tau (\mathbb{e})$ satisfies $\tau _{ij}(\mathbb{e})e_{ij} \ge c|\mathbb{e}|^p$ or $\tau _{ij}(\mathbb{e})e_{ij} \ge c(|\mathbb{e}|^2+|\mathbb{e}|^p)$. First, the model for the bipolar fluid is studied and existence, uniqueness and regularity of the weak solution is proved for $p > 1$ for both models. Then, under vanishing higher viscosity $\mu _1$, the Cauchy problem for the monopolar fluid is considered. For the first model the existence of the weak solution is proved for $p > \frac{3n}{n+2}$, its uniqueness and regularity for $p \ge 1 + \frac{2n}{n+2}$. In the case of the second model the existence of the weak solution is proved for $p>1$. (English) |
Keyword:
|
non-Newtonian incompressible fluids |
Keyword:
|
Navier-Stokes equations |
Keyword:
|
Cauchy problem |
MSC:
|
35Q30 |
MSC:
|
76A05 |
idZBL:
|
Zbl 0863.76003 |
idMR:
|
MR1382464 |
DOI:
|
10.21136/AM.1996.134320 |
. |
Date available:
|
2009-09-22T17:51:01Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134320 |
. |
Reference:
|
[1] R. A. Adams: Sobolev Spaces.Academic Press, 1975. Zbl 0314.46030, MR 0450957 |
Reference:
|
[2] H. Bellout, F. Bloom, J. Nečas: Young Measure-Valued Solutions for Non-Newtonian Incompressible Fluids.Preprint, 1991. MR 1301173 |
Reference:
|
[3] H. Bellout, F. Bloom, J. Nečas: Phenomenological Behaviour of Multipolar Viscous Fluids.Quaterly of Applied Mathematics 54 (1992), no. 3, 559–584. MR 1178435, 10.1090/qam/1178435 |
Reference:
|
[4] M. E. Bogovskij: Solutions of Some Problems of Vector Analysis with the Operators div and grad.Trudy Sem. S. L. Soboleva (1980), 5–41. (Russian) |
Reference:
|
[5] N. Dunford, J. T. Schwarz: Linear Operators: Part I. General Theory.Interscience Publishers Inc., New York, 1958. |
Reference:
|
[6] H. Gajewski, K. Gröger, K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie Verlag, Berlin, 1974. MR 0636412 |
Reference:
|
[7] J. Kurzweil: Ordinary Differential Equations.Elsevier, 1986. Zbl 0667.34002, MR 0929466 |
Reference:
|
[8] O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Flow.Gordon and Beach, New York, 1969. MR 0254401 |
Reference:
|
[9] D. Leigh: Nonlinear Continuum Mechanics.McGraw-Hill, New York, 1968. |
Reference:
|
[10] J. L. Lions: Qeulques méthodes de résolution des problèms aux limites non lineaires.Dunod, Paris, 1969. MR 0259693 |
Reference:
|
[11] J. Málek, J. Nečas, A. Novotný: Measure-valued solutions and asymptotic behavior of a multipolar model of a boundary layer.Czech. Math. Journal 42 (1992), no. 3, 549–575. MR 1179317 |
Reference:
|
[12] J. Málek, J. Nečas, M. Růžička: On Non-Newtonian Incompressible Fluids.M3AS 1 (1993). MR 1203271 |
Reference:
|
[13] J. Nečas: An Introduction to Nonlinear Elliptic Equations.J. Wiley, 1984. |
Reference:
|
[14] J. Nečas: Theory of Multipolar Viscous Fluids.The mathematics of finite elements and applications VII, MAFELAP 1990, J. R. Whiteman (ed.), Academic Press, 1991, pp. 233–244. MR 1132501 |
Reference:
|
[15] J. Nečas, M. Šilhavý: Multipolar Viscous Fluids.Quaterly of Applied Mathematics 49 (1991), no. 2, 247–266. MR 1106391, 10.1090/qam/1106391 |
Reference:
|
[16] M. Pokorný: Cauchy Problem for the Non-Newtonian Incompressible Fluid (Master degree thesis, Faculty of Mathematics and Physics, Charles University, Prague.1993. |
Reference:
|
[17] K. R. Rajagopal: Mechanics of Non-Newtonian Fluids.G. P. Galdi, J. Nečas: Recent Developments in Theoretical Fluid Dynamics, Pitman Research Notes in Math. Series 291, 1993. Zbl 0818.76003, MR 1268237 |
Reference:
|
[18] R. Temam: Navier-Stokes Equations—Theory and Numerical Analysis.North Holland, Amsterodam-New York-Oxford, 1979. Zbl 0426.35003, MR 0603444 |
Reference:
|
[19] H. Triebel: Theory of Function Spaces.Birkhäuser Verlag, Leipzig, 1983. Zbl 0546.46028, MR 0781540 |
Reference:
|
[20] H. Triebel: Interpolation Theory, Function Spaces, Differential Operators.Verlag der Wiss., Berlin, 1978. Zbl 0387.46033, MR 0500580 |
. |