Previous |  Up |  Next

Article

Title: Noncoercive hemivariational inequality and its applications in nonconvex unilateral mechanics (English)
Author: Goeleven, Daniel
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 41
Issue: 3
Year: 1996
Pages: 203-229
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to the study of a class of hemivariational inequalities which was introduced by P. D. Panagiotopoulos [31] and later by Z. Naniewicz [22]. These variational formulations are natural nonconvex generalizations [15–17], [22–33] of the well-known variational inequalities. Several existence results are proved in [15]. In this paper, we are concerned with some related results and several applications. (English)
Keyword: hemivariational inequalities
Keyword: variational inequalities
Keyword: abstract set-valued law in mechanics
Keyword: star-shaped admissible sets
MSC: 49J40
MSC: 49J52
idZBL: Zbl 0863.49007
idMR: MR1382465
DOI: 10.21136/AM.1996.134321
.
Date available: 2009-09-22T17:51:07Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134321
.
Reference: [1] R. A. Adams: Sobolev Spaces.Academic Press, New York, 1975. Zbl 0314.46030, MR 0450957
Reference: [2] S. Adly, D. Goeleven, M. Théra: Recession mappings and noncoercive variational inequalities.(to appear). MR 1377476
Reference: [3] H. Attouch, Z. Chbani, A. Moudafi: Recession operators and solvability of variational problems.Preprint, Laboratoire d’Analyse Convexe, Université de Montpellier 1993.
Reference: [4] C. Baiocchi, G. Buttazzo, F. Gastaldi, F. Tomarelli: General existence theorems for unilateral problems in continuum mechanics.Arch. Rat. Mech. Anal. 100 (1988), no. 2, 149–180. MR 0913962, 10.1007/BF00282202
Reference: [5] H. Brézis, L. Nirenberg: Characterizations of the ranges of some nonlinear operators and applications to boundary value problems.Ann. Scuola Normale Superiore Pisa, Classe di Scienze Serie IV V (1978), no. 2, 225–235. MR 0513090
Reference: [6] F. E. Browder: Nonlinear operators and nonlinear equations of evolution in Banach spaces.Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc. XVIII (1976), no. 2. Zbl 0327.47022, MR 0405188
Reference: [7] P. G. Ciarlet, P. Rabier: Les équations de Von Karman.Lecture Notes in Mathematics 836, Springer Verlag, 1980. MR 0595326
Reference: [8] P. G. Ciarlet, J. Nečas: Unilateral problems in nonlinear three-dimensional elasticity.Arch. Rational Mech. Anal. 87 (1985), 319–338. MR 0767504, 10.1007/BF00250917
Reference: [9] A. Cimetière: Un problème de flambement Unilatéral en théorie des plaques.Journal de Mécanique 19 (1980), no. 1, 183–202. MR 0571805
Reference: [10] F. H. Clarke: Nonsmooth Analysis and Optimization.Wiley, New York, 1984.
Reference: [11] J. Dieudonné: Eléments d’Analyse.Gauthier-Villars, 1968.
Reference: [12] G. Fichera: Boundary value problems in elasticity with unilateral constraints.Handbuch der Physik, Springer-verlag, Berlin-Heidelberg-New York VIa.2 (1972), 347–389.
Reference: [13] J. Frehse: Capacity methods in the theory of partial differential equations.Iber. d. Dt. Math.-Verein 84 (1982), 1–44. Zbl 0486.35002, MR 0644068
Reference: [14] D. Goeleven: On the solvability of noncoercive linear variational inequalities in separable Hilbert spaces.Journal of Optimization Theory and Applications 79 (1993), no. 3, 493–511. Zbl 0798.49012, MR 1255283, 10.1007/BF00940555
Reference: [15] D. Goeleven: Noncoercive hemivariational inequality approach to constrained problems for star-shaped admissible sets.FUNDP Research-Report, 1994.
Reference: [16] D. Goeleven, G. E. Stavroulakis, P. D. Panagiotopoulos: Solvability theory for a class of hemivariational inequalities involving copositive plus matrices.Applications in Robotics, Preprint 1995. MR 1422180
Reference: [17] H. N. Karamanlis, P. D. Panagiotopoulos: The eigenvalue problems in hemivariational inequalities and its applications to composite plates.Journal Mech. Behaviour of Materials, To appear.
Reference: [18] N. Kikuchi, J. T. Oden: Contact problems in elasticity: A study of variational inequalities and finite element methods.SIAM, Philadelphia, 1988. MR 0961258
Reference: [19] E. M. Landesman, A. C. Lazer: Nonlinear perturbations of linear elliptic boundary value problems at resonance.Journal of Mathematics and Mechanics 19 (1970), 609–623. MR 0267269
Reference: [20] J. L. Lions, G. Stampacchia: Variational inequalities.Comm. Pure Applied Math. XX (1967), 493–519. MR 0216344, 10.1002/cpa.3160200302
Reference: [21] D. T. Luc, J-P. Penot: Convergence of Asymptotic Directions.Preprint Université de Pau, 1994.
Reference: [22] Z. Naniewicz: Hemivariational inequality approach to constrained problems for starshaped admissible sets.Journal of Optimization Theory and Applications 83 (1994), no. 1, 97–112. MR 1298859, 10.1007/BF02191764
Reference: [23] Z. Naniewicz: On the pseudo-monotonocity of generalized gradients of nonconvex functions.Applicable Analysis 47 (1992), 151–172. MR 1333952, 10.1080/00036819208840138
Reference: [24] P. D. Panagiotopoulos: Coercive and semicoercive hemivariational inequalities.Nonlinear Analysis, Theory, Methods & Applications 16 (1991), no. 3, 209–231. Zbl 0733.49012, MR 1091520, 10.1016/0362-546X(91)90224-O
Reference: [25] P. D. Panagiotopoulos: Inéquations Hémivariationnelles semi-coercives dans la théorie des plaques de Von Karman.C. R. Acad. Sci. Paris 307 (1988), no. Série I, 735–738. Zbl 0653.73011, MR 0972823
Reference: [26] P. D. Panagiotopoulos, G. E. Stravoulakis: The delamination effect in laminated Von Kármán plates under unilateral boundary conditions. A variational-hemivariational inequality approach.Journal of Elasticity 23 (1990), 69–96. MR 1065231, 10.1007/BF00041685
Reference: [27] P. D. Panagiotopoulos, G. E. Stravoulakis: A variational-hemivariational inequality approach to the laminated plate theory under subdifferential boundary conditions.Quarterly of Applied Mathematics XLVI (1988), no. 3, 409–430. MR 0963579, 10.1090/qam/963579
Reference: [28] P. D. Panagiotopoulos: Semicoercive hemivariational inequalities, on the delamination of composite plates.Quarterly of Applied Mathematics XLVII (1989), no. 4, 611–629. Zbl 0693.73007, MR 1031680
Reference: [29] P. D. Panagiotopoulos: Hemivariational inequalities and substationarity in the static theory of v. Kármán plates.ZAMM, Z. Angew. Math. u. Mech. 65 (1985), no. 6, 219–229. MR 0801713, 10.1002/zamm.19850650608
Reference: [30] P. D. Panagiotopoulos: Hemivariational inequalities and their applications.In: J. J. Moreau, P. D. Panagiotopoulos, G. Strang (eds), Topics in Nonsmooth Mechanics, Birkhäuser Verlag 1988. Zbl 0973.90060, MR 0957088
Reference: [31] P. D. Panagiotopoulos: Nonconvex superpotentials in the sense of F. H. Clarke and applications.Mech. Res. Comm. 8 (1981), 335–340. MR 0639382
Reference: [32] P. D. Panagiotopoulos: Nonconvex Energy Function, Hemivariational Inequalities and Substationarity Principles.Acta Mech. 48 (1983), 160–183. MR 0715806
Reference: [33] P. D. Panagiotopoulos: Hemivariational Inequalities, Applications in Mechanics and Engineering.Springer Verlag Berlin Heidelberg, 1993. Zbl 0826.73002, MR 1385670
.

Files

Files Size Format View
AplMat_41-1996-3_3.pdf 2.292Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo