Previous |  Up |  Next

Article

Title: How to recover the gradient of linear elements on nonuniform triangulations (English)
Author: Hlaváček, Ivan
Author: Křížek, Michal
Author: Pištora, Vladislav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 41
Issue: 4
Year: 1996
Pages: 241-267
Summary lang: English
.
Category: math
.
Summary: We propose and examine a simple averaging formula for the gradient of linear finite elements in $R^d$ whose interpolation order in the $L^q$-norm is $\mathcal O(h^2)$ for $d<2q$ and nonuniform triangulations. For elliptic problems in $R^2$ we derive an interior superconvergence for the averaged gradient over quasiuniform triangulations. A numerical example is presented. (English)
Keyword: weighted averaged gradient
Keyword: linear elements
Keyword: nonuniform triangulations
Keyword: superapproximation
Keyword: superconvergence
MSC: 65N15
MSC: 65N30
idZBL: Zbl 0870.65093
idMR: MR1395685
DOI: 10.21136/AM.1996.134325
.
Date available: 2009-09-22T17:51:33Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134325
.
Reference: [1] M. Ainsworth, A. Craig: A posteriori error estimators in the finite element method.Numer. Math. 60 (1992), 429–463. MR 1142306, 10.1007/BF01385730
Reference: [2] I. Babuška, A. Miller: The post-processing in the finite element method, Parts I–II.Internat. J. Numer. Methods Engrg. 20 (1984), 1085–1109, 1111–1129. 10.1002/nme.1620200611
Reference: [3] H.-J. Bartsch: Taschenbuch mathematischer Formeln.VEB Fachbuchverlag, Leipzig, 1979. MR 1246330
Reference: [4] D. Begis, R. Glowinski: Applications de la méthode des éléments finis à l’approximation d’un problème de domaine optimal.Appl. Math. Optim. 2 (1975), 130–169. MR 0443372, 10.1007/BF01447854
Reference: [5] J. H. Bramble, R. S. Hilbert: Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation.SIAM J. Numer. Anal. 7 (1970), 112–124. MR 0263214, 10.1137/0707006
Reference: [6] J. H. Bramble, A. H. Schatz: Estimates for spline projections.RAIRO Anal. Numér. 10 (1976), 5–37. MR 0436620
Reference: [7] P. G. Ciarlet: Basic error estimates for elliptic problems, Handbook of Numerical Analysis II (P. G. Ciarlet, J. L. Lions eds.).North-Holland, Amsterdam, 1991. MR 1115237
Reference: [8] R. Durán, M. A. Muschietti, R. Rodríguez: On the asymptotic exactness of error estimators for linear triangular finite elements.Numer. Math. 59 (1991), 107–127. MR 1106377, 10.1007/BF01385773
Reference: [9] G. Goodsell, J. R. Whiteman: Pointwise superconvergence of recovered gradients for piecewise linear finite element approximations to problems of planar linear elasticity.Numer. Methods Partial Differential Equations 6 (1990), 59–74. MR 1034433, 10.1002/num.1690060105
Reference: [10] G. Goodsell, J. R. Whiteman: Superconvergence of recovered gradients of piecewise quadratic finite element approximations.Numer. Methods Partial Differential Equations 7 (1991), 61–83. MR 1088856, 10.1002/num.1690070106
Reference: [11] E. J. Haug, K. K. Choi, V. Komkov: Design sensitivity analysis of structural systems.Academic Press, London, 1986. MR 0860040
Reference: [12] I. Hlaváček, M. Křížek: On a superconvergent finite element scheme for elliptic systems, Parts I–III.Apl. Mat. 32 (1987), 131–154, 200–213, 276–289.
Reference: [13] I. Hlaváček, M. Křížek: Optimal interior and local error estimates of a recovered gradient of linear elements on nonuniform triangulations.J. Comput. Math (to appear). MR 1414854
Reference: [14] V. Kantchev: Superconvergence of the gradient for linear finite elements for nonlinear elliptic problems.Proc. of the ISNA Conf., Prague, 1987, Teubner, Leipzig, 1988, 199–204. Zbl 0677.65107, MR 1171706
Reference: [15] V. Kantchev, R. D. Lazarov: Superconvergence of the gradient of linear elements for 3D Poisson equation.Proc. Internat. Conf. Optimal Algorithms (ed. B. Sendov), Blagoevgrad, 1986, Izd. Bulg. Akad. Nauk, Sofia, 1986, 172–182.
Reference: [16] M. Křížek: An equilibrium finite element method in three-dimensional elasticity.Apl. Mat. 27 (1982), 46–75. MR 0640139
Reference: [17] M. Křížek, P. Neittaanmäki: Superconvergence phenomenon arising in the finite element method from averaging gradients.Numer. Math. 45 (1984), 105–116. MR 0761883, 10.1007/BF01379664
Reference: [18] M. Křížek, P. Neittaanmäki: On a global superconvergence of the gradient of linear triangular elements.J. Comput. Appl. Math. 18 (1987), 221–233. MR 0896426, 10.1016/0377-0427(87)90018-5
Reference: [19] M. Křížek, P. Neittaanmäki: On superconvergence techniques.Acta Appl. Math. 9 (1987), 175–198. MR 0900263, 10.1007/BF00047538
Reference: [20] N. Levine: Superconvergent recovery of the gradient from piecewise linear finite-element approximations.IMA J. Numer. Anal. 5 (1985), 407–427. Zbl 0584.65067, MR 0816065, 10.1093/imanum/5.4.407
Reference: [21] Q. Lin, N. Yan: A rectangle test for singular solution with irregular meshes.Proc. of Systems Sci. & Systems Engrg., Great Wall (H.K.) Culture Publ. Co., 1991, 236–237.
Reference: [22] Q. Lin, Q. Zhu: Asymptotic expansion for the derivative of finite elements.J. Comput. Math. 2 (1984), 361–363. MR 0869509
Reference: [23] A. Louis: Acceleration of convergence for finite element solutions of the Poisson equation.Numer. Math. 33 (1979), 43–53. Zbl 0435.65090, MR 0545741, 10.1007/BF01396494
Reference: [24] L. A. Oganesjan, L. A. Ruchovec: An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional region with a smooth boundary (Russian).Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102–1120. MR 0295599
Reference: [25] V. Thomée, J. Xu, N. Zhang: Superconvergence of the gradient in piecewise linear finite element approximation to a parabolic problem.SIAM J. Numer. Anal. 26 (1989), 553–573. MR 0997656, 10.1137/0726033
Reference: [26] L. B. Wahlbin: Local behavior in finite element methods, Handbook of Numerical Analysis II (P. G. Ciarlet, J. L. Lions eds.).North-Holland, Amsterdam, 1991, 353–522. MR 1115238
Reference: [27] L. B. Wahlbin: Superconvergence in Galerkin finite element methods (Lecture notes).Cornell Univ., 1994, 1–243. MR 1439050
Reference: [28] M. F. Wheeler, J. R. Whiteman: Superconvergent recovery of gradients on subdomains from piecewise linear finite element approximations.Numer. Methods Partial Differential Equations 3 (1987), 65–82. MR 1012906, 10.1002/num.1690030106
Reference: [29] R. Wohlgemuth: Superkonvergenz des Gradienten im Postprocessing von FiniteElemente-Methoden.Preprint Nr. 94, Tech. Univ. Chemnitz, 1989, 1–15.
Reference: [30] O. C. Zienkiewicz, J. Z. Zhu: The superconvergent patch recovery and a posteriori error estimates.Part 1, Internat. J. Numer. Methods Engrg. 33 (1992), 1331–1364. MR 1161557, 10.1002/nme.1620330702
.

Files

Files Size Format View
AplMat_41-1996-4_1.pdf 2.431Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo