Previous |  Up |  Next

Article

Title: Necessary conditions for uniform convergence of finite difference schemes for convection-diffusion problems with exponential and parabolic layers (English)
Author: Roos, Hans-Görg
Author: Stynes, Martin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 41
Issue: 4
Year: 1996
Pages: 269-280
Summary lang: English
.
Category: math
.
Summary: Singularly perturbed problems of convection-diffusion type cannot be solved numerically in a completely satisfactory manner by standard numerical methods. This indicates the need for robust or $\epsilon $-uniform methods. In this paper we derive new conditions for such schemes with special emphasize to parabolic layers. (English)
Keyword: numerical analysis
Keyword: convection-diffusion problems
Keyword: boundary layers
Keyword: uniform convergence
MSC: 65N06
MSC: 65N12
idZBL: Zbl 0870.65091
idMR: MR1395686
DOI: 10.21136/AM.1996.134326
.
Date available: 2009-09-22T17:51:39Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/134326
.
Reference: [AS64] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions.National Bureau of Standards, 1964.
Reference: [Ec73] Eckhaus, W.: Matched asymptotic expansions and singular perturbations.North-Holland, Amsterdam, 1973. Zbl 0255.34002, MR 0670800
Reference: [Em73] Emel’janov, K.V.: A difference scheme for a three-dimensional elliptic equation with a small parameter multiplying the highest derivative.Boundary value problems for equations of mathematical physics, USSR Academy of Sciences, Ural Scientific Centre, 1973, pp. 30–42. (Russian)
Reference: [Gu93] Guo, W.: Uniformly convergent finite element methods for singularly perturbed parabolic problems.Ph.D. Dissertation, National University of Ireland, 1993.
Reference: [HK90] Han, H., Kellogg, R.B.: Differentiability properties of solutions of the equation $-\epsilon ^2\Delta u+ru=f(x,y)$ in a square.SIAM J. Math. Anal., 21 (1990), 394–408. MR 1038899, 10.1137/0521022
Reference: [La61] Lax, P.D.: On the stability of difference approximations to solutions of hyperbolic equations with variable coefficients.Comm. Pure Appl. Math. 14 (1961), 497–520. Zbl 0102.11701, MR 0145686, 10.1002/cpa.3160140324
Reference: [Le76] Lelikova, E.F.: On the asymptotic solution of an elliptic equation of the second order with a small parameter effecting the highest derivative.Differential Equations 12 (1976), 1852–1865. (Russian) MR 0445100
Reference: [Ro85] Roos, H.-G.: Necessary convergence conditions for upwind schemes in the two-dimensional case.Int. J. Numer. Meth. Eng. 21 (1985), 1459–1469. Zbl 0578.65098, MR 0799066, 10.1002/nme.1620210808
Reference: [SK87] Shih, S.D., Kellogg, R.B.: Asymptotic analysis of a singular perturbation problem.SIAM J. Math. Anal., 18 (1987), 1467–1511. MR 0902346, 10.1137/0518107
Reference: [Sh89] Shishkin, G.I.: Approximation of the solutions of singularly perturbed boundary-value problems with a parabolic boundary layer.U.S.S.R. Comput. Maths. Math. Physics 29 (1989), 1–10. Zbl 0709.65073, MR 1011021, 10.1016/0041-5553(89)90109-2
Reference: [Si90] Shishkin, G.I.: Grid approximation of singularly perturbed boundary value problems with convective terms.Sov. J. Numer. Anal. Math. Modelling 5 (1990), 173–187. Zbl 0816.65051, MR 1122367, 10.1515/rnam.1990.5.2.173
Reference: [Si92] Shishkin, G.I.: Methods of constructing grid approximations for singularly perturbed boundary value problems.Sov. J. Numer. Anal. Math. Modelling 7 (1992), 537–562. Zbl 0816.65072, MR 1202653
Reference: [ST92] Stynes, M., Tobiska, L.: Necessary $L_2$-uniform conditions for difference schemes for two-dimensional convection-diffusion problems.Computers Math. Applic. 29 (1995), 45–53. MR 1321058, 10.1016/0898-1221(94)00237-F
Reference: [Ys83] Yserentant, H.: Die maximale Konsistenzordnung von Differenzapproximationen nichtnegativer Art.Numer. Math. 42 (1983), 119–123. MR 0716478, 10.1007/BF01400922
.

Files

Files Size Format View
AplMat_41-1996-4_2.pdf 1.432Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo