Previous |  Up |  Next

Article

Title: Approximations and error bounds for computing the inverse mapping (English)
Author: Jódar, L.
Author: Ponsoda, E.
Author: Rodríguez, G.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 42
Issue: 2
Year: 1997
Pages: 99-110
Summary lang: English
.
Category: math
.
Summary: In this paper we propose a procedure to construct approximations of the inverse of a class of ${\mathcal C}^{m}$ differentiable mappings. First of all we determine in terms of the data a neighbourhood where the inverse mapping is well defined. Then it is proved that the theoretical inverse can be expressed in terms of the solution of a differential equation depending on parameters. Finally, using one-step matrix methods we construct approximate inverse mappings of a prescribed accuracy. (English)
Keyword: approximations
Keyword: inverse mapping
Keyword: error bounds
Keyword: Banach space
Keyword: matrix differential equations
Keyword: one-step-method
Keyword: numerical example
MSC: 15A24
MSC: 26B10
MSC: 34A45
MSC: 34G20
MSC: 65D15
MSC: 65D30
MSC: 65H10
MSC: 65L06
idZBL: Zbl 0904.65051
idMR: MR1430404
DOI: 10.1023/A:1022291010828
.
Date available: 2009-09-22T17:53:56Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134348
.
Reference: [1] M. Bocher: Introduction to Higher Algebra.New York, McMillan, 1947.
Reference: [2] J. Dieudonné: Foundations of Modern Analysis.New York, Academic Press, 1960. MR 0120319
Reference: [3] N. Dunford, J. Schwartz: Linear Operators, Part I.New York, Interscience, 1957.
Reference: [4] T.M. Flett: Differential Analysis.Cambridge, Cambrigde Univ. Press, 1980. Zbl 0442.34002, MR 0561908
Reference: [5] G. Golub, C.F. Van Loan: Matrix Computations.Baltimore, John Hopkins Univ. Press, 1983. MR 0733103
Reference: [6] A. Graham: Kronecker Products and Matrix Calculus with Applications.New York, John Wiley, 1981. Zbl 0497.26005, MR 0640865
Reference: [7] P. Henrici: Discrete Variable Methods in Ordinary Differential Equations.New York, John Wiley, 1962. Zbl 0112.34901, MR 0135729
Reference: [8] A. Jameson: Solution of the equation $AX+XB=C$ by inversion of an $M\times M$ or $N\times N$ matrix.SIAM J. Appl. Math. 16 (1968)), 1020–1023. Zbl 0169.35202, MR 0234974, 10.1137/0116083
Reference: [9] L. Jódar, E. Ponsoda: Non-autonomous Riccati type matrix differential equations: existence interval, construction of continuous numerical solutions and error bounds.IMA J. Numer. Anal. 15 (1995), 61–74. MR 1311337, 10.1093/imanum/15.1.61
Reference: [10] J.D. Lambert: Computational Methods in Ordinary Differential Equations.New York, John Wiley, 1962. MR 0423815
Reference: [11] P. Lancaster, M. Tismenetsky: The Theory of Matrices. 2nd. ed.New York, Academic Press, 1985. MR 0792300
Reference: [12] P.Chr. Müller: Solution of the matrix equations $AX+XB=-Q$ and $S^TX+XS=-Q$.SIAM J. Appl. Math. 18 (1970), no. 3, 682–687. MR 0260158, 10.1137/0118061
Reference: [13] J.M. Ortega: Numerical Analysis, a Second Course.New York, Academic Press, 1972. Zbl 0248.65001, MR 0403154
Reference: [14] W.J. Vetter: Derivative operations on matrices.IEEE Trans. Aut. Control. AC-15 (1970), 241–244. MR 0272801
Reference: [15] S. Wolfram: Mathematica, a System for Doing Mathematics by Computer.Redwood City, Addison Wesley Publishing Co., 1989.
.

Files

Files Size Format View
AplMat_42-1997-2_2.pdf 340.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo