Previous |  Up |  Next

Article

Title: Prox-regularization and solution of ill-posed elliptic variational inequalities (English)
Author: Kaplan, Alexander
Author: Tichatschke, Rainer
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 42
Issue: 2
Year: 1997
Pages: 111-145
Summary lang: English
.
Category: math
.
Summary: In this paper new methods for solving elliptic variational inequalities with weakly coercive operators are considered. The use of the iterative prox-regularization coupled with a successive discretization of the variational inequality by means of a finite element method ensures well-posedness of the auxiliary problems and strong convergence of their approximate solutions to a solution of the original problem. In particular, regularization on the kernel of the differential operator and regularization with respect to a weak norm of the space are studied. These approaches are illustrated by two nonlinear problems in elasticity theory. (English)
Keyword: prox-regularization
Keyword: ill-posed elliptic variational inequalities
Keyword: finite element methods
Keyword: two-body contact problem
Keyword: stable numerical methods
Keyword: contact problem
Keyword: strong convergence
Keyword: weakly coercive operators
MSC: 35J85
MSC: 35R25
MSC: 47H19
MSC: 49A29
MSC: 49D45
MSC: 49J40
MSC: 49M99
MSC: 65K10
MSC: 73C30
idZBL: Zbl 0899.35040
idMR: MR1430405
DOI: 10.1023/A:1022243127667
.
Date available: 2009-09-22T17:54:03Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134349
.
Reference: [1] P. Alart: Contribution à la résolution numérique des inclusions différentielles.Thèse de 3 cycle, Montpellier, 1985.
Reference: [2] P. Alart and B. Lemaire: Penalization in non-classical convex programming via variational convergence.Math. Programming 51 (1991), 307–331. MR 1130329, 10.1007/BF01586942
Reference: [3] A.S. Antipin: Regularization methods for convex programming problems.Ekonomika i Mat. Metody 11 (1975), 336–342. (Russian)
Reference: [4] A.S. Antipin: On a method for convex programs using a symmetrical modification of the Lagrange function.Ekonomika i Mat. Metody 12 (1976), 1164–1173 (in Russian).
Reference: [5] H. Attouch: Variational Convergence for Functions and Operators, Applicable Mathematics Series.Pitman, London, 1984. MR 0773850
Reference: [6] H. Attouch and R.J.B. Wets: Isometries for the Legendre-Fenchel transformation.Transactions of the Amer. Math. Soc. 296 (1984), 33–60. MR 0837797, 10.1090/S0002-9947-1986-0837797-X
Reference: [7] A. Auslender: Numerical methods for nondifferentiable convex optimization.Mathem. Programming Study 30 (1987), 102–126. Zbl 0616.90052, MR 0874134, 10.1007/BFb0121157
Reference: [8] A. Auslender; J.P. Crouzeix and P. Fedit: Penalty proximal methods in convex programming.JOTA 55 (1987), 1–21. MR 0915675, 10.1007/BF00939042
Reference: [9] A.B. Bakushinski and B.T. Polyak: About the solution of variational inequalities.Soviet Math. Doklady 15 (1974), 1705–1710.
Reference: [10] P. Boiri; F. Gastaldi and D. Kinderlehrer: Existence, uniqueness and regularity results for the two-body contact problem.Appl. Math. Optim. 15 (1987), 251–277. MR 0879498, 10.1007/BF01442654
Reference: [11] H. Brezis and P.L. Lions: Produits infinis de resolvantes.Israel J. of Math. 29 (1978), 329–345. MR 0491922, 10.1007/BF02761171
Reference: [12] Ph.G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [13] G. Duvaut and J.L. Lions: Les Inéquations en Mécanique et en Physique.Dunod, Paris, 1972. MR 0464857
Reference: [14] G. Fichera: Boundary Value Problems of Elasticity with Unilateral Constraints.Springer-Verlag, Berlin 1972.
Reference: [15] R. Fletcher: Practical Methods of Optimization.J. Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapure, 1990. MR 1867781
Reference: [16] M. Fukushima: An outer approximation algorithm for solving general convex programs.Operations Research 31 (1983), 101–113. Zbl 0495.90066, MR 0695607, 10.1287/opre.31.1.101
Reference: [17] R. Glowinski; J.L. Lions and R. Trémolières: Numerical Analysis of Variational Inequalities.North-Holland, Amsterdam, 1981. Zbl 1169.65064, MR 0635927
Reference: [18] O. Güler: On the convergence of the proximal point algorithm for convex minimization.SIAM. J. Control and Optim. 29 (1991), 403–419. MR 1092735, 10.1137/0329022
Reference: [19] J. Gwinner: Finite-element convergence for contact problems in plane linear elastostatics.Quarterly of Applied Mathematics 50 (1992), 11–25. Zbl 0743.73025, MR 1146620, 10.1090/qam/1146620
Reference: [20] C.D. Ha: A generalization of the proximal point algorithm.SIAM J. on Control and Optimization 28 (1990), 503–512. Zbl 0699.49037, MR 1047419, 10.1137/0328029
Reference: [21] J. Haslinger and P.D. Panagiotopoulos: The reciprocal variational approach to the Signorini problem with friction.Approximation Results. Proc. Roy. Soc. Edinburgh 98A (1984), 365–383. MR 0768357
Reference: [22] I. Hlaváček; J. Haslinger; I. Nečas and J. Lovišek: Numerical Solution of Variational Inequalities.Springer-Verlag, Berlin-Heidelberg-New York, 1988.
Reference: [23] I. Hlaváček and I. Nečas: On inequalities of Korn’s type, I. Boundary-value problems for elliptic systems of partial differential equations.Arch. Rat. Mech. Anal. 306 (1970), 305–311. MR 0252844
Reference: [24] S. Ibaraki; M. Fukushima and T. Ibaraki: Primal-dual proximal point algorithm for linearly constrained convex programming problems.Computational Optimization and Application 1 (1992), 207–226. Zbl 1168.47046, MR 1226336, 10.1007/BF00253807
Reference: [25] A. Kaplan: Algorithm for convex programming using a smoothing for exact penalty functions.Sibirskij Mat. Journal 23 (1982), 53–64. (Russian) MR 0668335
Reference: [26] A. Kaplan and R. Tichatschke: Variational inequalities and convex semi-infinite programming problems.Optimization 26 (1992), 187–214. MR 1236607, 10.1080/02331939208843852
Reference: [27] A. Kaplan and R. Tichatschke: Regularized penalty methods for semi-infinite programming problems.Proc. of the 3rd Intern. Conf. On Parametric Optimization., F. Deutsch. B. Brosowski and J. Guddat (eds.), Ser. Approximation and Optimization, vol. 3, P. Lang Verlag, Frankfurt/Main, 1993, 341–356. MR 1241232
Reference: [28] A. Kaplan and R. Tichatschke: Multi-step prox-regularization methods for solving convex variational problems.Optimization 33 (1995), 287–319. MR 1332941, 10.1080/02331939508844083
Reference: [29] V.I. Kustova: Solution of variational inequalities by mathematical programming methods.Ph. D. Thesis, Novosibirsk, 1987. (Russian)
Reference: [30] B. Lemaire: The proximal algorithm.Internat. Series of Numerical Mathematics 87 (1989), 73–87. Zbl 0692.90079, MR 1001168
Reference: [31] E.J. Luque: Asymptotic convergence analysis of the proximal point algorithms.SIAM J. on Control and Optimization 22 (1984), 277–293. MR 0732428, 10.1137/0322019
Reference: [32] B. Martinet: Régularisation d’inéquations variationelles par approximations successives.RIRO 4 (1970), 154–159. MR 0298899
Reference: [33] U. Mosco: Convergence of convex sets and of solutions of variational inequalities.Advances in Mathematics 3 (1969), 510–585. Zbl 0192.49101, MR 0298508, 10.1016/0001-8708(69)90009-7
Reference: [34] K. Mouallif and P. Tossings: Une méthode de pénalisation exponentielle associée à une régularisation proximale.Bull. Soc. Roy. Sc. de Liège 56 (1987), 181–192. MR 0911355
Reference: [35] J. Nečas and I. Hlaváček: Mathematical Theory of Elastic and Elasto-plastic Bodies, An Introduction.Elsevier, Amsterdam, 1981. MR 0600655
Reference: [36] Z. Opial: Weak convergence of the successive approximations for nonexpansive mappings in Banach spaces.Bull. Amer. Math. Soc. 73 (1967), 591–597. MR 0211301, 10.1090/S0002-9904-1967-11761-0
Reference: [37] P.D. Panagiotopoulos: A nonlinear programming approach to the unilateral contact- and friction-boundary value problem in the theory of elasticity.Ing. Archiv 44 (1975), 421–432. Zbl 0332.73018, MR 0426584, 10.1007/BF00534623
Reference: [38] P.D. Panagiotopoulos: Inequality Problems in Mechanics and Applications.Birkhäuser-Verlag, Boston-Basel-Stuttgart, 1985. Zbl 0579.73014, MR 0896909
Reference: [39] B.T. Polyak: Introduction to Optimization.Optimization Software, Inc. Publ. Division, New York, 1987. MR 1099605
Reference: [40] R.T. Rockafellar: Monotone operators and the proximal point algorithm.SIAM J. Control and Optimization 15 (1976), 877–898. Zbl 0358.90053, MR 0410483, 10.1137/0314056
Reference: [41] R.T. Rockafellar: Augmented Lagrange multiplier functions and applications of the proximal point algorithm in convex programming.Math. Oper. Res. 1 (1976), 97–116. MR 0418919, 10.1287/moor.1.2.97
Reference: [42] F. Scarpini and M.A. Vivaldi: Error estimates for the approximation of some unilateral problems.RAIRO Anal. Numér. 11 (1977), 197–208. MR 0488860, 10.1051/m2an/1977110201971
Reference: [43] J.E. Spingarn: Partial inverse of a monotone operator.Applied Mathematics and Optimization 10 (1983), 247–265. Zbl 0524.90072, MR 0722489, 10.1007/BF01448388
Reference: [44] J.E. Spingarn: Application of the method of partial inverses to convex programming: Decomposition.Math. Programming 32 (1985), 199–223. MR 0793690
Reference: [45] P. Tossings: Algorithme du point proximal perturbé et applications.Prépublication No. 90-015, Inst. de Mathématique, Univ. de Liège, 1990.
.

Files

Files Size Format View
AplMat_42-1997-2_3.pdf 494.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo