Previous |  Up |  Next

Article

Title: On a certain two-sided symmetric condition in magnetic field analysis and computations (English)
Author: Melkes, František
Author: Ženíšek, Alexander
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 42
Issue: 2
Year: 1997
Pages: 147-159
Summary lang: English
.
Category: math
.
Summary: A special two-sided condition for the incremental magnetic reluctivity is introduced which guarantees the unique existence of both the weak and the approximate solutions of the nonlinear stationary magnetic field distributed on a region composed of different media, as well as a certain estimate of the error between the two solutions. The condition, being discussed from the physical as well as the mathematical point of view, can be easily verified and is fulfilled for various magnetic reluctivity models used in electrotechnical practice. (English)
Keyword: magnetic field
Keyword: variational formulation
Keyword: two-sided existence and uniqueness condition
Keyword: finite element method
Keyword: convergence
Keyword: finite element method
Keyword: numerical example
Keyword: magnetic potential
MSC: 35Q60
MSC: 65N12
MSC: 65N30
MSC: 65Z05
MSC: 78A30
idZBL: Zbl 0902.65078
idMR: MR1430406
DOI: 10.1023/A:1022295111737
.
Date available: 2009-09-22T17:54:09Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134350
.
Reference: [1] K. Chrobáček, F. Melkes, L. Rak: Stationary magnetic field computation of electrical machines.TES 1977, theoretical number, 22–29. (Czech)
Reference: [2] P.G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterodam, 1978. Zbl 0383.65058, MR 0520174
Reference: [3] E.A. Erdelyi, E.F. Fuchs, (D.H. Binkley): Nonlinear magnetic field analysis of DC machines I, II, III.IEEE Trans., PAS-89 (1970), 7, 1546–1583.
Reference: [4] A. Foggia, J.C. Sabonnadière, P. Silvester: Finite element solution of saturated travelling magnetic field problems.IEEE Trans., PAS-94 (1975), 866–871.
Reference: [5] Glowinski, A. Marrocco: Analyse numerique du champ magnetique d’un alternateur par elements finis et sur-relaxation ponctuelle non lineaire.Comput. Methods Appl. Mech. Engrg. 3 (1974), 55–85. MR 0413547, 10.1016/0045-7825(74)90042-5
Reference: [6] B. Lencová, M. Lenc: A finite element method for the computation of magnetic electron lenses.Scanning Electron Microscopy 1986/III, SEM Inc., AMF O’Hare, Chicago, 1986, pp. 897–915.
Reference: [7] F. Melkes: Solving the magnetic field by the finite element method.PhD. Thesis, Czechoslovak Academy of Sciences, Prague, 1970. (Czech—see also report of VÚES Brno, TZ 1481)
Reference: [8] F. Melkes: The finite element method for non-linear problems.Apl. Mat. 15 (1970), 177–189. Zbl 0209.17201, MR 0259695
Reference: [9] F. Melkes: Magnetic energy computation using piecewise linear approximations.Acta Tech. ČSAV (1990), 365–373.
Reference: [10] J. Polák: Variational Principles and Methods of Electromagnetic Theory.Academia, Prague, 1988. (Czech)
Reference: [11] H. Reiche: Die Ermittlung stationärer magnetischer Felder in elektrischen Maschinen.IX. Internat. Kolloquium TH, Ilmenau, 1966.
Reference: [12] P. Silvester, H.S. Cabayan, B.T. Browne: Efficient techniques for finite element analysis of electric machines.IEEE Trans., PAS-92 (1973), 1274–1281.
Reference: [13] H. Tsuboi, F. Kobayashi, T. Misaki: Two-dimensional magnetic field analysis using edge elements.Proc. of the Third Japanese-Czech-Slovak Joint Seminar on Applied Electromagnetics, Prague, 1995, pp. 53–56.
Reference: [14] A.M. Winslow: Numerical solution of the quasilinear Poisson equation in a non-uniform triangle mesh.LRL Livermore California, 1967, pp. 149–172. MR 0241008
Reference: [15] A. Ženíšek: The maximum angle condition in the finite element method for monotone problems with applications in magnetostatics.Numer. Math. 71 (1995), 399–417. MR 1347576, 10.1007/s002110050151
.

Files

Files Size Format View
AplMat_42-1997-2_4.pdf 416.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo