Previous |  Up |  Next

Article

Title: A comparison of homogenization, Hashin-Shtrikman bounds and the Halpin-Tsai equations (English)
Author: Wall, Peter
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 42
Issue: 4
Year: 1997
Pages: 245-257
Summary lang: English
.
Category: math
.
Summary: In this paper we study a unidirectional and elastic fiber composite. We use the homogenization method to obtain numerical results of the plane strain bulk modulus and the transverse shear modulus. The results are compared with the Hashin-Shtrikman bounds and are found to be close to the lower bounds in both cases. This indicates that the lower bounds might be used as a first approximation of the plane strain bulk modulus and the transverse shear modulus. We also point out the connection with the Hashin-Shtrikman bounds and the Halpin-Tsai equations. Optimal bounds on the fitting parameters in the Halpin-Tsai equations have been formulated. (English)
Keyword: composite materials
Keyword: homogenization
Keyword: Hashin-Shtrikman bounds
Keyword: Halpin-Tsai equations
Keyword: effective properties
Keyword: auxiliary partial differential equations
Keyword: unidirectional elastic fiber composite
Keyword: fitting parameter
MSC: 35B27
MSC: 35Q72
MSC: 73B27
MSC: 73K20
MSC: 74E05
MSC: 74E30
idZBL: Zbl 0898.35007
idMR: MR1453931
DOI: 10.1023/A:1023034411371
.
Date available: 2009-09-22T17:54:54Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134357
.
Reference: [1] B. D. Agarwal, L. J. Broutman: Analysis and Performance of Fiber Composites.second edn, Wiley Interscience, New York, 1990.
Reference: [2] N. Bakhvalov, G. Panasenko: Homogenization:Averaging Processes in Periodic Media.Kluwer Academic Publishers, Dordrecht, 1989. MR 1112788
Reference: [3] A. Cherkaev, L. Gibiansky: Coupled estimates for the bulk and shear moduli of a two-dimensional isotropic elastic composite.J. Mech. Phys. Solids 41(5) (1993),  937–980). MR 1214022, 10.1016/0022-5096(93)90006-2
Reference: [4] G. Dal Maso: An Introduction to $\Gamma $-Convergence.Birkhäuser, Boston, 1993. Zbl 0816.49001, MR 1201152
Reference: [5] J. C. Halpin, J. L Kardos: The Halpin-Tsai equations: A review.Polymer Engineering and science 16(5) (1976), 344–352. 10.1002/pen.760160512
Reference: [6] Z. Hashin: On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry.J. Mech. Phys. Solids 13 (1965), 119–134. 10.1016/0022-5096(65)90015-3
Reference: [7] Z. Hashin: Analysis of composite materials-a survey.J. Mech. Phys. Solids 50 (1983), 481–505. Zbl 0542.73092
Reference: [8] Z. Hashin, W. Rosen: The elastic moduli of fiber-reinforced materials.Journal of Applied Mechanics (1964), 223–232. 10.1115/1.3629590
Reference: [9] Z. Hashin, S. Shtrikman: A variational approach to the theory of elastic behaviour of multiphase materials.J. Mech. Phys. Solids 11 (1963), 127–140. MR 0159459, 10.1016/0022-5096(63)90060-7
Reference: [10] V. Jikov, S. Kozlov, O. Oleinik: Homogenization of Differential Operators and Integral Functionals.Springer-Verlag, Berlin Heidelberg New York, 1994. MR 1329546
Reference: [11] R. Lipton: On the behaviour of elastic composites with transverse isotropic symmetry.J. Mech. Phys. Solids 39(5) (1991), 663–681. MR 1112738, 10.1016/0022-5096(91)90046-Q
Reference: [12] D. Lukkasen, L.-E. Persson, P. Wall: Some engineering and mathematical aspects on the homogenization method.Composites Engineering 5(5) (1995), 519–531. 10.1016/0961-9526(95)00025-I
Reference: [13] D. Lukkasen, L.-E. Persson, P. Wall: On some sharp bounds for the $p$-Poisson equation.Applicable Analysis 58 (1995), 123–135. MR 1384593, 10.1080/00036819508840366
Reference: [14] G. W Milton: On characterizing the set of possible effective tensors of composites: The variational method and the translation method.Communications on Pure and Applied Mathematics XLIII (1990), 63–125. Zbl 0751.73041, MR 1024190
Reference: [15] G. W. Milton, R. V Kohn: Variational bounds on the effective moduli of anisotropic composites.J. Mech. Phys. Solids 36(6) (1988), 597–629. MR 0969257, 10.1016/0022-5096(88)90001-4
Reference: [16] L.-E. Persson, L. Persson, N. Svanstedt, J. Wyller: The Homogenization Method: An Introduction.Studentlitteratur, Lund, 1993. MR 1250833
Reference: [17] E. Sanchez-Palencia: Non Homogeneous Media and Vibration Theory.Lecture Notes in Physics 127, Springer Verlag, Berlin, 1980. Zbl 0432.70002, MR 0578345
Reference: [18] P. Wall: Optimal Bounds on the Effective Properties of Multiphase Materials by Homogenization.Thesis 41L, Dept. of Appl. Math., Luleå University of Technology, 1994.
.

Files

Files Size Format View
AplMat_42-1997-4_1.pdf 332.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo