Previous |  Up |  Next

Article

Title: Error estimates for distributed parameter identification in parabolic problems with output least squares and Crank-Nicolson method (English)
Author: Kärkkäinen, Tommi
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 42
Issue: 4
Year: 1997
Pages: 259-277
Summary lang: English
.
Category: math
.
Summary: The identification problem of a functional coefficient in a parabolic equation is considered. For this purpose an output least squares method is introduced, and estimates of the rate of convergence for the Crank-Nicolson time discretization scheme are proved, the equation being approximated with the finite element Galerkin method with respect to space variables. (English)
Keyword: parameter identification
Keyword: parabolic problem
Keyword: finite element method
Keyword: Crank-Nicolson scheme
Keyword: least squares method
Keyword: heat equation
Keyword: inverse problem
Keyword: error bounds
MSC: 35B37
MSC: 35K05
MSC: 35R30
MSC: 49N50
MSC: 65M06
MSC: 65M15
MSC: 65M30
MSC: 65M60
idZBL: Zbl 0902.65036
idMR: MR1453932
DOI: 10.1023/A:1023012328209
.
Date available: 2009-09-22T17:55:01Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134358
.
Reference: [1] S. C. Brenner and L. R. Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics.Springer-Verlag vol. 15, New York, 1994. MR 1278258
Reference: [2] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam, 1978. Zbl 0383.65058, MR 0520174
Reference: [3] J. Douglas, Jr. and T. Dupont: Galerkin methods for parabolic equations with nonlinear boundary conditions.Numer. Math. 20 (1973), 213–237. MR 0319379, 10.1007/BF01436565
Reference: [4] G. Fairweather: Finite Element Galerkin Methods for Differential Equations, Lecture notes in pure and applied mathematics vol. 34.Marcel Dekker, Inc., New York, 1978. MR 0495013
Reference: [5] R. S. Falk: Error estimates for the numerical identification of a variable coefficient.Math. Comp. 40 (1983), 537–546. Zbl 0551.65083, MR 0689469, 10.1090/S0025-5718-1983-0689469-3
Reference: [6] T. Kärkkäinen: Error Estimates for Distributed Parameter Identification Problems.PhD thesis, University of Jyäskylä, Department of Mathematics, Report 65, 1995. MR 1332491
Reference: [7] M. Luskin and R. Rannacher: On the smoothing property of the Galerkin method for parabolic equations.SIAM J. Numer. Anal. 19 (1981), 93–113. MR 0646596
Reference: [8] R. Scott: Interpolated boundary conditions in the finite element method.SIAM J. Numer. Anal. 12 (1975), 404–427. Zbl 0357.65082, MR 0386304, 10.1137/0712032
Reference: [9] X.-C. Tai and T. Kärkkäinen: Identification of a nonlinear parameter in a parabolic equation from a linear equation.Comp. Appl. Math. 14 (1995), 157–184. MR 1364156
Reference: [10] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems, Lecture Notes in Mathematics vol. 1054.Springer-Verlag, Berlin Heidelberg, 1984. MR 0744045
Reference: [11] M. F. Wheeler: A priori $L^2$ error estimates for Galerkin approximations to parabolic partial differential equations.SIAM J. Numer. Anal. 10 (1973), 723–759. MR 0351124, 10.1137/0710062
.

Files

Files Size Format View
AplMat_42-1997-4_2.pdf 384.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo